Abstract

We present a comparison of image reconstruction techniques for optical projection tomography. We compare conventional filtered back projection, sinogram filtering using the frequency–distance relationship (FDR), image deconvolution, and 2D point-spread-function-based iterative reconstruction. The latter three methods aim to remove the spatial blurring in the reconstructed image originating from the limited depth of field caused by the point spread function of the imaging system. The methods are compared based on simulated data, experimental optical projection tomography data of single fluorescent beads, and high-resolution optical projection tomography imaging of an entire zebrafish larva. We demonstrate that the FDR method performs poorly on data acquired with high numerical aperture optical imaging systems. We show that the deconvolution technique performs best on highly sparse data with low signal-to-noise ratio. The point-spread-function-based reconstruction method is superior for nonsparse objects and data of high signal-to-noise ratio.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image resolution and deconvolution in optical tomography

Jelle van der Horst and Jeroen Kalkman
Opt. Express 24(21) 24460-24472 (2016)

Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction

Lingling Chen, James McGinty, Harriet B. Taylor, Laurence Bugeon, Jonathan R. Lamb, Margaret J. Dallman, and Paul M. W. French
Opt. Express 20(7) 7323-7337 (2012)

Direct inversion algorithm for focal plane scanning optical projection tomography

Kevin G. Chan and Michael Liebling
Biomed. Opt. Express 8(11) 5349-5358 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription