Abstract

Automated and accurate classification of magnetic resonance images (MRIs) of the brain has great importance for medical analysis and interpretation. This paper presents a hybrid optimized classification method to classify the brain tumor by classifying the given magnetic resonance brain image as normal or abnormal. The proposed system implements a gray wolf optimizer (GWO) combined with a supervised artificial neural network (ANN) classifier to achieve enhanced MRI classification accuracy via selecting the optimal parameters of ANN. The introduced GWO–ANN classification system performance is compared to the traditional neural network (NN) classifier using receiver operating characteristic analysis. Experimental results obviously indicate that the presented system achieves a high classification rate and performs much better than the traditional NN classifier.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Sub-pixel displacement measurement based on the combination of a gray wolf optimizer and gradient algorithm

Long Sun, Chen Tang, Min Xu, and Zhenkun Lei
Appl. Opt. 60(4) 901-911 (2021)

High-sensitivity and specificity of laser-induced autofluorescence spectra for detection of colorectal cancer with an artificial neural network

L. C. Kwek, Sheng Fu, T. C. Chia, C. H. Diong, C. L. Tang, and S. M. Krishnan
Appl. Opt. 44(19) 4004-4008 (2005)

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, and Seyyed Mohammad Reza Darbani
Appl. Opt. 56(12) 3372-3377 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription