H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105, 805–824 (2017).

[Crossref]

H. Huang and H. Hua, “An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Display 25, 200–207 (2017).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

A. Markman, X. Shen, H. Hua, and B. Javidi, “Augmented reality three dimensional object visualization and recognition with axially distributed sensing,” Opt. Lett. 41, 297–300 (2016).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

T. H. Jen, X. Shen, G. Yao, Y. P. Huang, H. P. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).

[Crossref]

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11, 889–893 (2015).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

D. W. F. Van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

K. Ukai and P. A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations,” Displays 29, 106–116 (2010).

[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9, 287–309 (2000).

[Crossref]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).

[Crossref]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).

[Crossref]

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).

[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008), pp. 193–202.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).

[Crossref]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).

[Crossref]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008), pp. 193–202.

S. M. Ebenholtz, Oculomotor Systems and Perception (Cambridge University, 2001).

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9, 287–309 (2000).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

K. Ukai and P. A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations,” Displays 29, 106–116 (2010).

[Crossref]

H. Huang and H. Hua, “An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Display 25, 200–207 (2017).

[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105, 805–824 (2017).

[Crossref]

A. Markman, X. Shen, H. Hua, and B. Javidi, “Augmented reality three dimensional object visualization and recognition with axially distributed sensing,” Opt. Lett. 41, 297–300 (2016).

[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11, 889–893 (2015).

[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).

[Crossref]

H. Huang and H. Hua, “An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Display 25, 200–207 (2017).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

T. H. Jen, X. Shen, G. Yao, Y. P. Huang, H. P. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).

[Crossref]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).

[Crossref]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

A. Markman, X. Shen, H. Hua, and B. Javidi, “Augmented reality three dimensional object visualization and recognition with axially distributed sensing,” Opt. Lett. 41, 297–300 (2016).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11, 889–893 (2015).

[Crossref]

T. H. Jen, X. Shen, G. Yao, Y. P. Huang, H. P. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).

[Crossref]

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).

[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

[Crossref]

F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).

[Crossref]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).

[Crossref]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).

[Crossref]

F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).

[Crossref]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).

[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

[Crossref]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).

[Crossref]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).

[Crossref]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

D. W. F. Van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9, 287–309 (2000).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

A. Markman, X. Shen, H. Hua, and B. Javidi, “Augmented reality three dimensional object visualization and recognition with axially distributed sensing,” Opt. Lett. 41, 297–300 (2016).

[Crossref]

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

T. H. Jen, X. Shen, G. Yao, Y. P. Huang, H. P. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

K. Ukai and P. A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations,” Displays 29, 106–116 (2010).

[Crossref]

D. W. F. Van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11, 889–893 (2015).

[Crossref]

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).

[Crossref]

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).

[Crossref]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).

[Crossref]

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008), pp. 193–202.

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).

[Crossref]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).

[Crossref]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).

[Crossref]

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).

[Crossref]

K. Ukai and P. A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations,” Displays 29, 106–116 (2010).

[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34–47 (2001).

[Crossref]

D. W. F. Van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11, 889–893 (2015).

[Crossref]

X. Xiao, X. Shen, M. Martínez-Corral, and B. Javidi, “Multiple-planes pseudoscopic-to-orthoscopic conversion for 3D integral imaging display,” J. Display Technol. 11, 921–926 (2015).

[Crossref]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).

[Crossref]

M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

[Crossref]

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).

[Crossref]

H. Huang and H. Hua, “An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Display 25, 200–207 (2017).

[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).

[Crossref]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51, 341–377 (2011).

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).

[Crossref]

T. H. Jen, X. Shen, G. Yao, Y. P. Huang, H. P. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).

[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).

[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23, 971–981 (2015).

[Crossref]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H.-P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527–8538 (2016).

[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40, 538–541 (2015).

[Crossref]

Y. J. Wang, X. Shen, Y. H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40, 3564–3567 (2015).

[Crossref]

A. Markman, X. Shen, H. Hua, and B. Javidi, “Augmented reality three dimensional object visualization and recognition with axially distributed sensing,” Opt. Lett. 41, 297–300 (2016).

[Crossref]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).

[Crossref]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).

[Crossref]

F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).

[Crossref]

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9, 287–309 (2000).

[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105, 805–824 (2017).

[Crossref]

J.-Y. Son, H. Lee, B.-R. Lee, and K.-H. Lee, “Holographic and light-field imaging as future 3-D displays,” Proc. IEEE 105, 789–804 (2017).

[Crossref]

M. Martínez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging,” Proc. IEEE 105, 825–836 (2017).

[Crossref]

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).

[Crossref]

J. Arai, E. Nakasu, T. Yamashita, H. Hiura, M. Miura, T. Nakamura, and R. Funatsu, “Progress overview of capturing method for integral 3-D imaging displays,” Proc. IEEE 105, 837–849 (2017).

[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008), pp. 193–202.

S. M. Ebenholtz, Oculomotor Systems and Perception (Cambridge University, 2001).