Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Realistic ports in integrating spheres: reflectance, transmittance, and angular redirection

Not Accessible

Your library or personal account may give you access

Abstract

We use Monte Carlo ray-tracing modeling to follow the stochastic trajectories of rays entering a cylindrical port from inside an integrating sphere. This allows us to study and quantify properties of realistic ports of non-negligible length, as opposed to the common thin-port assumption used in most theoretical treatments, where the port is simply considered as a hole in the spherical wall. We show that most practical ports encountered in integrating sphere applications cannot be modeled as thin ports. Indeed, a substantial proportion of rays entering the port can be reflected back into the sphere, with port reflectances as high as 80% demonstrated on realistic examples. This can have significant consequences on estimates of the sphere multiplier and therefore pathlength inside the sphere, a critical parameter in many applications. Moreover, a nonzero port reflectance is inevitably associated with reduced transmittance through the port, with implications in terms of overall throughput. We also discuss angular redistribution effects in a realistic port and the consequences in terms of detected throughput within a fixed numerical aperture. Those results highlight the importance of real port effects for any quantitative predictions of optical systems using integrating spheres. We believe that those effects can be exploited to engineer ports for specific applications and improve the overall sphere performance in terms of pathlength or throughput. This work carries important implications in our theoretical understanding of integrating spheres and on the practical design of optical systems using them.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative theory of integrating sphere throughput: comparison with experiments

Adam Francis, Chhayly Tang, and Eric C. Le Ru
Appl. Opt. 60(18) 5335-5344 (2021)

Integrating sphere port error in diffuse reflectance measurements

Luke J. Sandilands and Thomas Cameron
Appl. Opt. 62(29) 7700-7705 (2023)

Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser

Annica M. Nilsson, Andreas Jonsson, Jacob C. Jonsson, and Arne Roos
Appl. Opt. 50(7) 999-1006 (2011)

Supplementary Material (1)

NameDescription
Code 1       Matlab/Octave script. Simplified code for calculating port reflectance and transmittance.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.