Abstract

We propose a train headlamp system using dual half-circular parabolic aluminized reflectors. Each half-circular reflector contains five high-efficiency and small-package light-emitting diode (LED) chips, and the halves are 180° rotationally symmetric. For traffic safety, the headlamp satisfies the Code of Federal Regulations. To predict the pattern of illumination, an analytical derivation is developed for the optical path of a ray that is perpendicular to and emitted from the center of an LED chip. This ray represents the main ray emitted from the LED chip and is located at the maximum illuminance of the spot projected by the LED source onto a screen. We then analyze the design systematically to determine the locations of the LED chips in the reflector that minimize electricity consumption while satisfying reliability constraints associated with traffic safety. Compared to a typical train headlamp system with an incandescent or halogen lamp needing several hundred watts, the proposed system only uses 20.18 W to achieve the luminous intensity requirements.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast measurement of automotive headlamps based on high dynamic range imaging

Hsien-Huang P. Wu, Yi-Ping Lee, and Shih-Hsin Chang
Appl. Opt. 51(28) 6870-6880 (2012)

Modular design of the LED vehicle projector headlamp system

Chi-Chang Hsieh, Yan-Huei Li, and Chih-Ching Hung
Appl. Opt. 52(21) 5221-5229 (2013)

Design of an LED-based compound optical system for a driving beam system

Aiming Ge, Wei Wang, Zhengqing Du, Peng Qiu, Junwei Wang, Jinlin Cai, and Xiaobo Song
Appl. Opt. 52(12) 2688-2693 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
    [Crossref]
  2. O. F. Farsakoglu and H. Y. Hasirci, “Energy optimization of low power LED drivers in indoor lighting,” J. Optoelectron. Adv. Mater. 17, 816–821 (2015).
  3. S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
    [Crossref]
  4. D. A. Wagenaar, “An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging,” PLoS ONE 7, e29822 (2012).
    [Crossref]
  5. B. H. Hamadani, J. Roller, A. M. Shore, B. Dougherty, and H. W. Yoon, “Large-area irradiance-mode spectral response measurements of solar cells by a light-emitting, diode-based integrating sphere source,” Appl. Opt. 53, 3565–3573 (2014).
    [Crossref]
  6. K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
    [Crossref]
  7. X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
    [Crossref]
  8. S. Landau and J. Erion, “Car makers embrace LED signals,” Nat. Photonics 1, 31–32 (2007).
    [Crossref]
  9. L. G. Novakovsky, “Train illumination is a key problem of forming underground light medium,” Light Eng. 19, 10–25 (2011).
  10. H. B. Cheng, C. Y. Xu, X. L. Jing, and H. Y. Tam, “Design of compact LED free-form optical system for aeronautical illumination,” Appl. Opt. 54, 7632–7639 (2015).
    [Crossref]
  11. L. M. Brill, “Wavefronts-theatre-of-performing-lights: on light shows with music and dance,” Leonardo 13, 307–309 (1980).
    [Crossref]
  12. D. Jafrancesco, L. Mercatelli, P. Sansoni, D. Fontani, E. Sani, S. Coraggia, M. Meucci, and F. Francini, “Optical design of a light-emitting diode lamp for a maritime lighthouse,” Appl. Opt. 54, 3252–3262 (2015).
    [Crossref]
  13. G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
    [Crossref]
  14. H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
    [Crossref]
  15. https://www.law.cornell.edu/cfr/text/49/229.125 .
  16. X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
    [Crossref]
  17. J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
    [Crossref]
  18. Y. Lai and N. Cordero, “Thermal management of bright LEDs for automotive applications,” in IEEE Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2006), pp. 1–5.
  19. H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
    [Crossref]
  20. F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
    [Crossref]
  21. P. Ge, Y. Li, Z. J. Chen, and H. Wang, “LED high-beam headlamp based on free-form microlenses,” Appl. Opt. 53, 5570–5575 (2014).
    [Crossref]
  22. X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
    [Crossref]
  23. S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib. 8, 561–564 (2008).
    [Crossref]
  24. A. A. Mal’kin, “Using macros when designing centered optical systems in the ZEMAX program,” J. Opt. Technol. 83, 173–174 (2016).
    [Crossref]
  25. M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).
  26. Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wireless Propag. Lett. 13, 540–543 (2014).
    [Crossref]
  27. I. V. Vovk, “Diffraction of sound-waves by a parabolic reflector,” Acoust. Phys. 25, 379–382 (1979).
  28. http://pct.cree.com/dt/index.html .
  29. C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
    [Crossref]
  30. https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php .

2016 (2)

P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
[Crossref]

A. A. Mal’kin, “Using macros when designing centered optical systems in the ZEMAX program,” J. Opt. Technol. 83, 173–174 (2016).
[Crossref]

2015 (8)

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

O. F. Farsakoglu and H. Y. Hasirci, “Energy optimization of low power LED drivers in indoor lighting,” J. Optoelectron. Adv. Mater. 17, 816–821 (2015).

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

H. B. Cheng, C. Y. Xu, X. L. Jing, and H. Y. Tam, “Design of compact LED free-form optical system for aeronautical illumination,” Appl. Opt. 54, 7632–7639 (2015).
[Crossref]

D. Jafrancesco, L. Mercatelli, P. Sansoni, D. Fontani, E. Sani, S. Coraggia, M. Meucci, and F. Francini, “Optical design of a light-emitting diode lamp for a maritime lighthouse,” Appl. Opt. 54, 3252–3262 (2015).
[Crossref]

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
[Crossref]

2014 (4)

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

B. H. Hamadani, J. Roller, A. M. Shore, B. Dougherty, and H. W. Yoon, “Large-area irradiance-mode spectral response measurements of solar cells by a light-emitting, diode-based integrating sphere source,” Appl. Opt. 53, 3565–3573 (2014).
[Crossref]

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wireless Propag. Lett. 13, 540–543 (2014).
[Crossref]

P. Ge, Y. Li, Z. J. Chen, and H. Wang, “LED high-beam headlamp based on free-form microlenses,” Appl. Opt. 53, 5570–5575 (2014).
[Crossref]

2013 (1)

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

2012 (1)

D. A. Wagenaar, “An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging,” PLoS ONE 7, e29822 (2012).
[Crossref]

2011 (1)

L. G. Novakovsky, “Train illumination is a key problem of forming underground light medium,” Light Eng. 19, 10–25 (2011).

2010 (2)

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
[Crossref]

2008 (2)

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib. 8, 561–564 (2008).
[Crossref]

2007 (1)

S. Landau and J. Erion, “Car makers embrace LED signals,” Nat. Photonics 1, 31–32 (2007).
[Crossref]

2004 (1)

C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
[Crossref]

1999 (1)

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

1980 (1)

L. M. Brill, “Wavefronts-theatre-of-performing-lights: on light shows with music and dance,” Leonardo 13, 307–309 (1980).
[Crossref]

1979 (1)

I. V. Vovk, “Diffraction of sound-waves by a parabolic reflector,” Acoust. Phys. 25, 379–382 (1979).

Adam, R.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Azcondo, F. J.

C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
[Crossref]

Bartella, J.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Bracho, S.

C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
[Crossref]

Branas, C.

C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
[Crossref]

Brill, L. M.

L. M. Brill, “Wavefronts-theatre-of-performing-lights: on light shows with music and dance,” Leonardo 13, 307–309 (1980).
[Crossref]

Cai, G. Q.

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

Cai, Y. X.

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

Chen, C.

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

Chen, F.

Chen, G. D.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

Chen, J. X.

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

Chen, P. Y.

P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
[Crossref]

Chen, T. T.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Chen, Z. J.

Cheng, H. B.

Chu, M. T.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Coraggia, S.

Cordero, N.

Y. Lai and N. Cordero, “Thermal management of bright LEDs for automotive applications,” in IEEE Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2006), pp. 1–5.

Dicken, W.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Dong, J. Y.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

Dougherty, B.

Erion, J.

S. Landau and J. Erion, “Car makers embrace LED signals,” Nat. Photonics 1, 31–32 (2007).
[Crossref]

Fang, L.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Farsakoglu, O. F.

O. F. Farsakoglu and H. Y. Hasirci, “Energy optimization of low power LED drivers in indoor lighting,” J. Optoelectron. Adv. Mater. 17, 816–821 (2015).

Fontani, D.

Francini, F.

Fu, H. K.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Gan, Z. Y.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Ge, P.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
[Crossref]

P. Ge, Y. Li, Z. J. Chen, and H. Wang, “LED high-beam headlamp based on free-form microlenses,” Appl. Opt. 53, 5570–5575 (2014).
[Crossref]

Gebelea, T.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Ghaffar, A.

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

Grunwald, H.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Hamadani, B. H.

Hasirci, H. Y.

O. F. Farsakoglu and H. Y. Hasirci, “Energy optimization of low power LED drivers in indoor lighting,” J. Optoelectron. Adv. Mater. 17, 816–821 (2015).

He, J. G.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Huang, S. B.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Ickesa, G.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Jafrancesco, D.

Jang, S.

S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib. 8, 561–564 (2008).
[Crossref]

Jia, D. Y.

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

Jing, X. L.

Jung, M.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Kunkela, S.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Lai, Y.

Y. Lai and N. Cordero, “Thermal management of bright LEDs for automotive applications,” in IEEE Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2006), pp. 1–5.

Landau, S.

S. Landau and J. Erion, “Car makers embrace LED signals,” Nat. Photonics 1, 31–32 (2007).
[Crossref]

Lee, A. T.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Li, X. F.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

Li, Y.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

P. Ge, Y. Li, Z. J. Chen, and H. Wang, “LED high-beam headlamp based on free-form microlenses,” Appl. Opt. 53, 5570–5575 (2014).
[Crossref]

Liang, C.

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

Lin, P.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Liu, S.

F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
[Crossref]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Liu, Y. H.

P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
[Crossref]

Liu, Z. Y.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Long, X. M.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Luo, X. B.

F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
[Crossref]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Mal’kin, A. A.

Mercatelli, L.

Meucci, M.

Mitzlaffa, S.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Naqvi, Q. A.

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

Nauenburga, K.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Naz, M. Y.

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

Novakovsky, L. G.

L. G. Novakovsky, “Train illumination is a key problem of forming underground light medium,” Light Eng. 19, 10–25 (2011).

Pan, C. T.

P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
[Crossref]

Patza, U.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Pour, Z. A.

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wireless Propag. Lett. 13, 540–543 (2014).
[Crossref]

Qin, Z.

Ren, F.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Roller, J.

Sani, E.

Sansoni, P.

Shafai, L.

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wireless Propag. Lett. 13, 540–543 (2014).
[Crossref]

Shakir, I.

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

Shin, M. W.

S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib. 8, 561–564 (2008).
[Crossref]

Shore, A. M.

Snyderb, J.

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Sun, J.

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

Tam, H. Y.

Vovk, I. V.

I. V. Vovk, “Diffraction of sound-waves by a parabolic reflector,” Acoust. Phys. 25, 379–382 (1979).

Wagenaar, D. A.

D. A. Wagenaar, “An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging,” PLoS ONE 7, e29822 (2012).
[Crossref]

Wang, C. P.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Wang, H.

Wang, J.

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

Wang, K.

F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
[Crossref]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Wu, D.

Wu, H.

H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
[Crossref]

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

Xu, C. Y.

Xu, T.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Yang, S. C.

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Yao, D. C.

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

Yoon, H. W.

Zhang, C.

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

Zhang, X. M.

H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
[Crossref]

Zhao, X. J.

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

Zhou, B.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Zhou, J.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Zhou, X.

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Zhu, Q.

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

Zhu, X. B.

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

Acoust. Phys. (1)

I. V. Vovk, “Diffraction of sound-waves by a parabolic reflector,” Acoust. Phys. 25, 379–382 (1979).

Appl. Opt. (4)

IEEE Antennas Wireless Propag. Lett. (1)

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wireless Propag. Lett. 13, 540–543 (2014).
[Crossref]

IEEE Trans. Device Mater. Relib. (1)

S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib. 8, 561–564 (2008).
[Crossref]

IEEE Trans. Ind. Electron. (1)

C. Branas, F. J. Azcondo, and S. Bracho, “Study of output power variation due to component tolerances in LCsCp resonant inverters applied to HPS lamp control,” IEEE Trans. Ind. Electron. 51, 122–131 (2004).
[Crossref]

Int. J. Circuit Theory Appl. (1)

P. Y. Chen, C. T. Pan, and Y. H. Liu, “A long lifetime passive LED driver with power factor correction,” Int. J. Circuit Theory Appl. 44, 2058–2071 (2016).
[Crossref]

J. Coastal Res. (1)

G. Q. Cai, D. C. Yao, J. Sun, D. Y. Jia, and J. X. Chen, “Predict of high-speed train’s safe operation based on fuzzy inference,” J. Coastal Res. 73, 792–796 (2015).
[Crossref]

J. Opt. Technol. (1)

J. Optoelectron. Adv. Mater. (2)

M. Y. Naz, A. Ghaffar, I. Shakir, and Q. A. Naqvi, “Analysis of optical focused electromagnetic field by a parabolic reflector coated with a plasma layer under normal incidence,” J. Optoelectron. Adv. Mater. 17, 27–32 (2015).

O. F. Farsakoglu and H. Y. Hasirci, “Energy optimization of low power LED drivers in indoor lighting,” J. Optoelectron. Adv. Mater. 17, 816–821 (2015).

Jpn. J. Appl. Phys. (1)

S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, “Variation of electrostatic discharge robustness induced by the surface morphology of high power light-emitting diodes,” Jpn. J. Appl. Phys. 49, 056602 (2010).
[Crossref]

Leonardo (1)

L. M. Brill, “Wavefronts-theatre-of-performing-lights: on light shows with music and dance,” Leonardo 13, 307–309 (1980).
[Crossref]

Light Eng. (1)

L. G. Novakovsky, “Train illumination is a key problem of forming underground light medium,” Light Eng. 19, 10–25 (2011).

Lighting Res. Technol. (1)

X. F. Li, Y. Li, J. Y. Dong, G. D. Chen, C. Liang, and P. Ge, “A light-emitting diode headlamp for motorcycles based on freeform micro-lenses,” Lighting Res. Technol. 47, 495–506 (2015).
[Crossref]

Microelectron J. (1)

J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, “Thermal design and simulation of automotive headlamps using white LEDs,” Microelectron J. 45, 249–255 (2014).
[Crossref]

Nat. Photonics (1)

S. Landau and J. Erion, “Car makers embrace LED signals,” Nat. Photonics 1, 31–32 (2007).
[Crossref]

Opt. Eng. (1)

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (2)

H. Wu, X. M. Zhang, and P. Ge, “Modular design of a high-efficiency LED headlamp system based on freeform reflectors,” Opt. Laser Technol. 72, 79–85 (2015).
[Crossref]

X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262–266 (2013).
[Crossref]

PLoS ONE (1)

D. A. Wagenaar, “An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging,” PLoS ONE 7, e29822 (2012).
[Crossref]

Renew. Sustainable Energ. Rev. (1)

X. M. Long, J. G. He, J. Zhou, L. Fang, X. Zhou, F. Ren, and T. Xu, “A review on light-emitting diode based automotive headlamps,” Renew. Sustainable Energ. Rev. 41, 29–41 (2015).
[Crossref]

Surf. Coat. Technol. (1)

H. Grunwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkela, K. Nauenburga, T. Gebelea, S. Mitzlaffa, G. Ickesa, U. Patza, and J. Snyderb, “Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production,” Surf. Coat. Technol. 111, 287–296 (1999).
[Crossref]

Other (4)

https://www.law.cornell.edu/cfr/text/49/229.125 .

Y. Lai and N. Cordero, “Thermal management of bright LEDs for automotive applications,” in IEEE Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2006), pp. 1–5.

https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php .

http://pct.cree.com/dt/index.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Comparison of the illuminated area size between light sources using (a) a tungsten filament and (b) two high-efficiency LEDs in a PAR56 reflector.
Fig. 2.
Fig. 2. Illustration of the path traveled by the reflected ray. (a) A ray is emitted in the normal direction from the center of the LED chip in the parabolic reflector. (b) A normal to reflective surface can be obtained using a ray that is emitted from the focal point to the point of incidence (point B ) and is reflected parallel to the z axis. (c) The main ray emitted by the LED chip is reflected based on the normal line.
Fig. 3.
Fig. 3. Optical path that a ray emitted normally from the center of the LED chip takes in traversing from parabolic reflector to screen.
Fig. 4.
Fig. 4. Entirety of rays emitted from an LED chip is reflected onto the screen by the parabolic reflector to create a blurry spot.
Fig. 5.
Fig. 5. (a) Oblique view and (b) side view, with dimensions of mold for PAR56 reflector.
Fig. 6.
Fig. 6. Setting a higher target that is 1.25 times the legal illuminance requirement of CFR to simulate a safety-optimized design.
Fig. 7.
Fig. 7. Tracing main rays emitted from the five LED chips, whose specifications are given in Table 1. (a) Side view of the PAR56 reflector. (b) Top view of the PAR56 reflector. (c) Enlarged view of (b). Each emitted ray is numbered. (d) Oblique view of the PAR56 reflector. (e) Oblique view of the whole system.
Fig. 8.
Fig. 8. Five illuminated spots on the screen based on the optical system shown in Fig. 7 with specifications as described in Table 1.
Fig. 9.
Fig. 9. Typical spatial distribution of XLamp XB-H LED warm white optical source model.
Fig. 10.
Fig. 10. Upper half-reflector with five XB-H LEDs inside. (a) Oblique view of the optical system design. (b) Top view of the five XB-H LED locations with numbering shown.
Fig. 11.
Fig. 11. Illuminated patterns corresponding to the LEDs Nos. 1–5 arranged as in Fig. 10, demonstrating the individual and combined total illumination areas from five XB-H LEDs in the upper half-reflector with the upper limit illuminance satisfying the minimum requirement of the CFR at an angle of 20°.
Fig. 12.
Fig. 12. (a) Proposed train headlamp architecture, in which each half-reflector with five XB-H LEDs is rotationally symmetric at an angle of 180° with respect to the z axis. (b) The illuminance from tracing the rays of all ten XB-H LEDs.
Fig. 13.
Fig. 13. Illuminance from tracing the rays of all ten XB-H LEDs in the headlamp system, with an upper limit illuminance that satisfies the CFR at angles of (a) 7.5° and (b) 20°.
Fig. 14.
Fig. 14. (a) Regulations aim at developing illumination at large angles to warn drivers to slow down when they are still far from a crossing. (b) Only a narrow beam is needed as train approaches or passes by a platform.
Fig. 15.
Fig. 15. Illuminance of the train headlamp using only one XB-H LED at the focal point in each half-headlamp reflector.

Tables (1)

Tables Icon

Table 1. Departure Positions ( a , b ) of the Five Main Rays Emitted by the LED Chips, and the Corresponding Illuminated spots ( x s , y s )

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

x 2 + y 2 2 R z = 0 .
F B ¯ = [ a 2 + ( 4 f b a 2 ) 2 + ( b f ) 2 ] 1 / 2 = b + f .
B C = ( a / 2 , 4 f b a 2 / 2 , f ) .
x = a + ( a / 2 ) t ,
y = 4 f b a 2 + ( 4 f b a 2 / 2 ) t ,
z = b + f t ,
x = E 1 = a + ( a / 2 ) u ,
y = E 2 = 4 f b a 2 + ( 4 f b a 2 / 2 ) u ,
z = E 3 = b + f u .
A E = ( ( a 2 ) u , 4 f b a 2 + ( 4 f b a 2 2 ) u , f u ) .
A E · B C = 0 .
[ ( a / 2 ) 2 u ] + [ ( a 2 4 f b ) / 2 + u ( 4 f b a 2 ) / 4 ] + f 2 u = 0 .
u = 4 f b a 2 2 ( f b + f 2 ) .
( E 1 , E 2 , E 3 ) = ( A 1 + D 1 2 , A 2 + D 2 2 , A 3 + D 3 2 ) .
D 1 = a a u ,
D 2 = 2 [ 4 f b a 2 + ( 4 f b a 2 / 2 ) u ] ,
D 3 = b + 2 f u .
B D = ( a u , 4 f b a 2 ( 4 f b a 2 ) u , 2 f u ) .
x = a a u v ,
y = 4 f b a 2 + [ 4 f b a 2 ( 4 f b a 2 ) u ] v = 4 f b a 2 [ 1 + ( 1 u ) v ] ,
z = b + 2 f u v ,

Metrics