Abstract

Beads trapped in optical tweezers are aligned along the optical propagation direction, which makes it difficult to determine the number of beads with bright-field microscopy. This problem also dramatically influences the measurement of the optical trapping based single-molecule force spectroscopy. Here, we propose a video processing approach to count the number of trapped micro-objects in real time. The approach uses a normalized cross-correlation algorithm and image enhancement techniques to amplify a slight change of the image induced by the entry of an exotic object. As tested, this method introduces a 10% change per bead to the image similarity, and up to four beads, one-by-one falling into the trap, are identified. Moreover, the feasibility of the above analysis in a moving trap is investigated. A movement of the trap leads to a fluctuation of less than 2% for the similarity signal and can be ignored in most cases. The experimental results prove that image similarity measurement is a sensitive way to monitor the interruption, which is very useful, especially during experiments. In addition, the approach is easy to apply to an existing optical tweezers system.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superresolution imaging in optical tweezers using high-speed cameras

Juan Pablo Staforelli, Esteban Vera, José Manuel Brito, Pablo Solano, Sergio Torres, and Carlos Saavedra
Opt. Express 18(4) 3322-3331 (2010)

Optical concatenation of a large number of beads with a single-beam optical tweezer

Remy Avila, Joaquín Ascencio-Rodríguez, Daniel Tapia-Merino, Oscar G. Rodríguez-Herrera, and Arturo González-Suárez
Opt. Lett. 42(7) 1393-1396 (2017)

Particle tracking stereomicroscopy in optical tweezers: Control of trap shape

Richard Bowman, Graham Gibson, and Miles Padgett
Opt. Express 18(11) 11785-11790 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription