Abstract

A dual-fiber optical trap system to trap and rotate a borosilicate microsphere has been proposed and experimentally demonstrated. The trapping system can be used as a probe to measure environmental parameters, such as torque, force, and viscosity of the surrounding medium. Under various conditions with different fiber misalignments, optical power, and fiber separation, the trapped sphere will exhibit three motion profiles including random oscillation, round rotation, and abnormal rotation. The power spectrum analysis method is used to measure rotation rates up to 385 Hz, which can be further increased by increasing laser power. In addition, simulation and experiment show consistent results in rotation rates and motion trajectory, which verifies the validity and accuracy of dynamic analysis.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset

Xinlin Chen, Guangzong Xiao, Hui Luo, Wei Xiong, and Kaiyong Yang
Opt. Express 24(7) 7575-7584 (2016)

Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad
Opt. Lett. 28(23) 2288-2290 (2003)

Parametric study of the forces on microspheres held by optical tweezers

W. H. Wright, G. J. Sonek, and M. W. Berns
Appl. Opt. 33(9) 1735-1748 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics