Abstract

A novel surface plasmon resonance (SPR)-based fiber optic arsenic [As (III)] sensor is presented using α-Fe2O3/SnO2 core-shell nanostructure [abbreviated as (α-Fe/Sn) CS] synthesized using hydrolysis. Due to its extraordinary properties, such as very large surface area, great adsorption capabilities, and chemical reactivity, α-Fe2O3 nanoparticles offer excellent sensitivity and selectivity for As (III), while SnO2 shows great catalytic properties. To achieve the best sensing performance, the (α-Fe/Sn) CS is synthesized at different temperatures, and its morphological study is carried out using transmission electron microscopy. The performance of the probe fabricated over the silver-coated unclad core of the fiber with optimized fabrication temperature and attachment time of (α-Fe/Sn) CS is investigated for 0–100 μg/L concentration of As (III). The sensor possesses the limit of detection of 0.47 μg/L. Further, the roles of common interferands in sensor performance are investigated. The sensor possesses the advantages of real-time detection, capability of remote sensing, and online monitoring, which uphold its industrial application.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription