Abstract

We present a wide field of view (FOV) infrared scanning system, designed for single-pixel near-infrared thermal imaging. The scanning system consisted of a two-axis micro-electromechanical system (MEMS) mirror that was incorporated within the lens. The optical system consisted of two groups of lenses and a silicon avalanche photodiode. The system was designed for both the production of thermal images and also to utilize the techniques of radiation thermometry to measure the absolute temperature of targets from 500°C to 1100°C. Our system has the potential for real-time image acquisition, with improved data acquisition electronics. The FOV of our scanning system was ±30° when fully utilizing the MEMS mirror’s scanning angle of ±5°. The pixel FOV (calculated from the distance to target size ratio) was 100:1. The image quality was analyzed, including the modulation transfer function, spot diagrams, ray fan plots, lateral chromatic aberrations, distortion, relative illumination, and size-of-source effect. The instrument was fabricated in our laboratory, and one of the thermal images, which was taken with the new lens, is presented as an example of the instrument optical performance.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative traceable temperature measurement using novel thermal imaging camera

Matthew J. Hobbs, Chengxi Zhu, Matthew P. Grainger, Chee Hing Tan, and Jon R. Willmott
Opt. Express 26(19) 24904-24916 (2018)

Quantitative thermal imaging using single-pixel Si APD and MEMS mirror

Matthew J. Hobbs, Matthew P. Grainger, Chengxi Zhu, Chee Hing Tan, and Jonathan R. Willmott
Opt. Express 26(3) 3188-3198 (2018)

Long eye relief fundus camera and fixation target with partial correction of ocular longitudinal chromatic aberration

Samuel Steven, Yusufu N. Sulai, Soon K. Cheong, Julie Bentley, and Alfredo Dubra
Biomed. Opt. Express 9(12) 6017-6037 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Howell and R. Siegel, Thermal Radiation Heat Transfer (Hemisphere, 1992).
  2. R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
    [Crossref]
  3. E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
    [Crossref]
  4. M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
    [Crossref]
  5. T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
    [Crossref]
  6. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
    [Crossref]
  7. P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE, 2007).
  8. J. Dixon, “Radiation thermometry,” J. Phys. E 21, 425–436 (1988).
    [Crossref]
  9. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
    [Crossref]
  10. Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Academic, 2009).
  11. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231 (2004).
    [Crossref]
  12. J. G. Harris and Y.-M. Chiang, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” IEEE Trans. Image Process. 8, 1148–1151 (1999).
    [Crossref]
  13. M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.
  14. H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
    [Crossref]
  15. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  16. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
    [Crossref]
  17. K. M. Czajkowski, A. Pastuszczak, and R. Kotynski, “Real-time single-pixel video imaging with Fourier domain regularization,” Opt. Express 26, 20009–20022 (2018).
    [Crossref]
  18. N. Pelin Ayerden, U. Aygun, S. T. Holmstrom, S. Olcer, B. Can, J. L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267–7272 (2014).
    [Crossref]
  19. X. Lee and C. Wang, “Optical design for uniform scanning in MEMS-based 3D imaging lidar,” Appl. Opt. 54, 2219–2223 (2015).
    [Crossref]
  20. A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V. F. Duma, A. Santhanam, K. P. Thompson, and J. P. Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24, 13365–13374 (2016).
    [Crossref]
  21. Land Instruments International, “SPOT high precision pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_spot_brochure_marcom0355_rev_15.pdf .
  22. M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2017).
  23. M. J. Hobbs, M. P. Grainger, C. Zhu, C. H. Tan, and J. R. Willmott, “Quantitative thermal imaging using single-pixel Si APD and MEMS mirror,” Opt. Express 26, 3188–3198 (2018).
    [Crossref]
  24. V. Milanovic, “Linearized gimbal-less two-axis MEMS mirrors,” in Optical Fiber Communication Conference (2009), p. JThA19.
  25. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50, 2376–2382 (2011).
    [Crossref]
  26. S. Z. Sullivan, R. D. Muir, J. A. Newman, M. S. Carlsen, S. Sreehari, C. Doerge, N. J. Begue, R. M. Everly, C. A. Bouman, and G. J. Simpson, “High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories,” Opt. Express 22, 24224–24234 (2014).
    [Crossref]
  27. M. J. Hobbs, C. Zhu, M. P. Grainger, C. H. Tan, and J. R. Willmott, “Quantitative traceable temperature measurement using novel thermal imaging camera,” Opt. Express 26, 24904–24916 (2018).
    [Crossref]

2018 (3)

2017 (1)

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

2016 (1)

2015 (4)

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

X. Lee and C. Wang, “Optical design for uniform scanning in MEMS-based 3D imaging lidar,” Appl. Opt. 54, 2219–2223 (2015).
[Crossref]

2014 (2)

2012 (1)

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

2011 (1)

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

2005 (1)

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
[Crossref]

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231 (2004).
[Crossref]

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

2000 (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

1999 (1)

J. G. Harris and Y.-M. Chiang, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” IEEE Trans. Image Process. 8, 1148–1151 (1999).
[Crossref]

1988 (1)

J. Dixon, “Radiation thermometry,” J. Phys. E 21, 425–436 (1988).
[Crossref]

Allen, D. W.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
[Crossref]

Amigo, A.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Aygun, U.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Begue, N. J.

Ben-Yakar, A.

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231 (2004).
[Crossref]

Boone, N.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Bouman, C. A.

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Campbell, J. C.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Can, B.

Canavesi, C.

Carlsen, M. S.

Chiang, Y.-M.

J. G. Harris and Y.-M. Chiang, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” IEEE Trans. Image Process. 8, 1148–1151 (1999).
[Crossref]

Childs, D. T. D.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Childs, P. R. N.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Chludzinski, J. W.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Cogliati, A.

Czajkowski, K. M.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Dixon, J.

J. Dixon, “Radiation thermometry,” J. Phys. E 21, 425–436 (1988).
[Crossref]

Doerge, C.

Donnelly, J. P.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Duma, V. F.

Durr, N. J.

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Espalin, D.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Everly, R. M.

Fee, D.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Funk, J. E.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Garcia, D. F.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Grainger, M. P.

Granda, J. C.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

Greenwood, J. R.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Groom, K. M.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Harris, J. G.

J. G. Harris and Y.-M. Chiang, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” IEEE Trans. Image Process. 8, 1148–1151 (1999).
[Crossref]

Hayes, A.

Hobbs, M. J.

Holmstrom, S. T.

Howell, J. R.

J. R. Howell and R. Siegel, Thermal Radiation Heat Transfer (Hemisphere, 1992).

Hoy, C. L.

Itzler, M. A.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Ivanov, P.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Kotynski, R.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Lee, X.

Long, C. A.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Lopez, T.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Machin, G.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Academic, 2009).

Mahoney, L. J.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

McIntosh, K. A.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Milanovic, V.

V. Milanovic, “Linearized gimbal-less two-axis MEMS mirrors,” in Optical Fiber Communication Conference (2009), p. JThA19.

Mireles, J.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Molleda, J.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

Möllmann, K.-P.

M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2017).

Moriano, D.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Muir, R. D.

Mumtaz, K.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Newman, J. A.

Oakley, D. C.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Olcer, S.

Padgett, M. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Pastuszczak, A.

Pelin Ayerden, N.

Perez, M. A.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Prata, A. J.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Rendueles, J. L.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

Rodriguez, E.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

Rolland, J. P.

Santhanam, A.

Saunders, P.

P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE, 2007).

Saunders, R. D.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
[Crossref]

Siegel, R.

J. R. Howell and R. Siegel, Thermal Radiation Heat Transfer (Hemisphere, 1992).

Simpson, G. J.

Sreehari, S.

Stehle, J. L.

Sullivan, S. Z.

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tan, C. H.

Tankam, P.

Terrazas, C. A.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Thomas, H. E.

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Thompson, K. P.

Tsai, B. K.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Academic, 2009).

Urey, H.

Usamentiaga, R.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

Verghese, S.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Vollmer, M.

M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2017).

Wang, C.

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Wicker, R. B.

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Willmott, J.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Willmott, J. R.

Yoon, H. W.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
[Crossref]

Younger, R. D.

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Zavala-Arredondo, M.

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Academic, 2009).

Zhu, C.

Addit. Manuf. (1)

E. Rodriguez, J. Mireles, C. A. Terrazas, D. Espalin, M. A. Perez, and R. B. Wicker, “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Addit. Manuf. 5, 31–39 (2015).
[Crossref]

Appl. Opt. (3)

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

J. G. Harris and Y.-M. Chiang, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” IEEE Trans. Image Process. 8, 1148–1151 (1999).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61, 1149–1159 (2012).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231 (2004).
[Crossref]

J. Phys. E (1)

J. Dixon, “Radiation thermometry,” J. Phys. E 21, 425–436 (1988).
[Crossref]

J. Volcanol. Geotherm. Res. (1)

T. Lopez, H. E. Thomas, A. J. Prata, A. Amigo, D. Fee, and D. Moriano, “Volcanic plume characteristics determined using an infrared imaging camera,” J. Volcanol. Geotherm. Res. 300, 148–166 (2015).
[Crossref]

Mater. Des. (1)

M. Zavala-Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom, and K. Mumtaz, “Laser diode area melting for high speed additive manufacturing of metallic components,” Mater. Des. 117, 305–315 (2017).
[Crossref]

Metrologia (1)

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89–96 (2005).
[Crossref]

Opt. Express (5)

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[Crossref]

Sci. Rep. (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Other (7)

V. Milanovic, “Linearized gimbal-less two-axis MEMS mirrors,” in Optical Fiber Communication Conference (2009), p. JThA19.

P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE, 2007).

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Academic, 2009).

J. R. Howell and R. Siegel, Thermal Radiation Heat Transfer (Hemisphere, 1992).

Land Instruments International, “SPOT high precision pyrometers,” https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_spot_brochure_marcom0355_rev_15.pdf .

M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2017).

M. A. Itzler, R. D. Younger, J. C. Campbell, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays,” in Advanced Photon Counting Techniques III (Society of Photo-optical Instrumentation Engineers, 2009), p. 73200Q.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic diagram of our optical system. f1 is the focal length of the first group of lenses; f2 is the focal length of the second group of lenses; h1 is the intermediate image height; Δm1 is the distance between the MEMS mirror center to the first focal point in image space; Δm2 is the distance between the MEMS mirror center to the second focal point in object space; θ1 is the incident angle of the chief ray at maximum FOV; θ2 is the incident angle of the chief ray to the MEMS mirror; and θM is the half-maximum scanning angle of the MEMS mirror.
Fig. 2.
Fig. 2. Relationship between F-number, f1, and Δm1. The diagram shows the potential solutions of F-number with various f1 and Δm1 (within±100  mm range). The blue area represents the system with a relatively small F-number, while the yellow area represents the system with a large F-number.
Fig. 3.
Fig. 3. Flow chart of the scanning system design.
Fig. 4.
Fig. 4. Schematic cross-section view of the system.
Fig. 5.
Fig. 5. MTF diagram of the system. The working distance was set to infinity.
Fig. 6.
Fig. 6. Spot diagrams of the system. The working distance was set to infinity.
Fig. 7.
Fig. 7. Ray fan plots of the system. The working distance was set to infinity.
Fig. 8.
Fig. 8. Lateral chromatic aberration of the system. The working distance was set to infinity.
Fig. 9.
Fig. 9. Optical distortion of the system. The working distance was set to infinity.
Fig. 10.
Fig. 10. Relative illumination of the system. The working distance was set to infinity.
Fig. 11.
Fig. 11. Analysis of measurement areas on the target. (a) Measurement area extents are shown for FOV of 0° and 30°; (b) SSE is shown for FOV of 0° and 30°. The working distance was set to 5 m. The total input power was 1 W.
Fig. 12.
Fig. 12. Matrix of spot diagrams under the worst condition found during tolerance simulations. The working distance was set to infinity.
Fig. 13.
Fig. 13. MTF diagram under the worst condition found during tolerance simulations. The working distance was set to infinity.
Fig. 14.
Fig. 14. Cross-section diagram of our lens. The red line indicates the optical axis.
Fig. 15.
Fig. 15. Photograph of our lens system when used to thermally image an approximate blackbody furnace. The working distance was 300 mm. The target was illuminated by a furnace set to 1000°C.
Fig. 16.
Fig. 16. Thermal image of the measurand, chosen as a visual illustration of the performance of our lens system.

Tables (4)

Tables Icon

Table 1. First-Order Specifications of the System

Tables Icon

Table 2. Data of the System

Tables Icon

Table 3. Tolerance Parameter Ranges (at 0.95 μm)

Tables Icon

Table 4. Tolerance Analysis (at 0.95 μm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D:S=f/(αDp),
Fnumber=f(f1/Δm1)×(DMEMS×cos45°),
f=f1f2Δm1+Δm2.
f=18  mm,
DMEMS=5  mm,
θM5°.
Distortion=|FOVactlFOVnomlHFOV|,

Metrics