M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

N. Agarwal and Q. Kemao, “Windowed Fourier ridges as a spatial carrier phase-shifting algorithm,” Opt. Eng. 56, 080501 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

P. Xia, Q. Wang, S. Ri, and H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system,” Opt. Lett. 42, 4954–4957 (2017).

[Crossref]

Q. Kemao, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Lasers Eng. 66, 67–73 (2015).

[Crossref]

S. Ri and H. Tsuda, “Two-dimensional sampling Moiré method for fast and accurate phase analysis of single fringe pattern,” Proc. SPIE 8769, 876921 (2013).

[Crossref]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

L. Watkins, “Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms,” Opt. Lasers Eng. 50, 1015–1022 (2012).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, iii–x (2012).

[Crossref]

L. Huang, C. S. Ng, and A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry,” Opt. Lasers Eng. 50, 529–533 (2012).

[Crossref]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling Moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[Crossref]

C. Wang and F. Da, “Phase demodulation using adaptive windowed Fourier transform based on Hilbert–Huang transform,” Opt. Express 20, 18459–18477 (2012).

[Crossref]

G. Rajshekhar and P. Rastogi, “Multiple signal classification technique for phase estimation from a fringe pattern,” Appl. Opt. 51, 5869–5875 (2012).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe demodulation using the two-dimensional phase differencing operator,” Opt. Lett. 37, 4278–4280 (2012).

[Crossref]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).

[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).

[Crossref]

H. Guo, Q. Yang, and M. Chen, “Local frequency estimation for the fringe pattern with a spatial carrier: principle and applications,” Appl. Opt. 46, 1057–1065 (2007).

[Crossref]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity contrast determination,” Appl. Opt. 46, 4613–4624 (2007).

[Crossref]

J. A. Ferrari and E. M. Frins, “Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier,” Opt. Commun. 271, 59–64 (2007).

[Crossref]

J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).

[Crossref]

S. Vanlanduit, J. Vanherzeele, P. Guillaume, B. Cauberghe, and P. Verboven, “Fourier fringe processing by use of an interpolated Fourier-transform technique,” Appl. Opt. 43, 5206–5213 (2004).

[Crossref]

P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).

[Crossref]

M. Hytch, J. Putaux, and J. Penisson, “Measurement of the displacement field of dislocation to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003).

[Crossref]

J. Endo, J. Chen, D. Koboyashi, Y. Wada, and H. Fujita, “Transmission laser microscope using the phase-shifting techniques and its application to measurement of optical waveguides,” Appl. Opt. 41, 1308–1314 (2002).

[Crossref]

P. S. Huang, Q. J. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Appl. Opt. 41, 4503–4509 (2002).

[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263–284 (2001).

[Crossref]

P. H. Chan, P. J. Bryanston-Cross, and S. C. Parker, “Spatial phase stepping method of fringe-pattern analysis,” Opt. Lasers Eng. 23, 343–354 (1995).

[Crossref]

M. Servin and F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995).

[Crossref]

M. Kujawinska and J. Wójciak, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” Proc. SPIE 1508, 61–67 (1991).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

N. Agarwal and Q. Kemao, “Windowed Fourier ridges as a spatial carrier phase-shifting algorithm,” Opt. Eng. 56, 080501 (2017).

[Crossref]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[Crossref]

L. Huang, C. S. Ng, and A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry,” Opt. Lasers Eng. 50, 529–533 (2012).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

P. H. Chan, P. J. Bryanston-Cross, and S. C. Parker, “Spatial phase stepping method of fringe-pattern analysis,” Opt. Lasers Eng. 23, 343–354 (1995).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

M. Gdeisat, D. Burton, and M. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[Crossref]

J. Buytaert and J. Dirckx, “Study of the performance of 84 phase-shifting algorithms for interferometry,” J. Opt. 40, 114–131 (2011).

[Crossref]

P. H. Chan, P. J. Bryanston-Cross, and S. C. Parker, “Spatial phase stepping method of fringe-pattern analysis,” Opt. Lasers Eng. 23, 343–354 (1995).

[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263–284 (2001).

[Crossref]

P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).

[Crossref]

P. S. Huang, Q. J. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Appl. Opt. 41, 4503–4509 (2002).

[Crossref]

M. Servin and F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995).

[Crossref]

J. Buytaert and J. Dirckx, “Study of the performance of 84 phase-shifting algorithms for interferometry,” J. Opt. 40, 114–131 (2011).

[Crossref]

J. A. Ferrari and E. M. Frins, “Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier,” Opt. Commun. 271, 59–64 (2007).

[Crossref]

J. A. Ferrari and E. M. Frins, “Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier,” Opt. Commun. 271, 59–64 (2007).

[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

M. Gdeisat, D. Burton, and M. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

L. Huang, C. S. Ng, and A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry,” Opt. Lasers Eng. 50, 529–533 (2012).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).

[Crossref]

P. S. Huang, Q. J. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Appl. Opt. 41, 4503–4509 (2002).

[Crossref]

M. Hytch, J. Putaux, and J. Penisson, “Measurement of the displacement field of dislocation to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003).

[Crossref]

N. Agarwal and Q. Kemao, “Windowed Fourier ridges as a spatial carrier phase-shifting algorithm,” Opt. Eng. 56, 080501 (2017).

[Crossref]

Q. Kemao, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Lasers Eng. 66, 67–73 (2015).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

Q. Kemao, Windowed Fringe Pattern Analysis (SPIE, 2013).

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

M. Kujawinska and J. Wójciak, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” Proc. SPIE 1508, 61–67 (1991).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

M. Gdeisat, D. Burton, and M. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling Moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[Crossref]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

L. Huang, C. S. Ng, and A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry,” Opt. Lasers Eng. 50, 529–533 (2012).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

P. H. Chan, P. J. Bryanston-Cross, and S. C. Parker, “Spatial phase stepping method of fringe-pattern analysis,” Opt. Lasers Eng. 23, 343–354 (1995).

[Crossref]

M. Hytch, J. Putaux, and J. Penisson, “Measurement of the displacement field of dislocation to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003).

[Crossref]

M. Hytch, J. Putaux, and J. Penisson, “Measurement of the displacement field of dislocation to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe demodulation using the two-dimensional phase differencing operator,” Opt. Lett. 37, 4278–4280 (2012).

[Crossref]

G. Rajshekhar and P. Rastogi, “Multiple signal classification technique for phase estimation from a fringe pattern,” Appl. Opt. 51, 5869–5875 (2012).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, iii–x (2012).

[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

P. Xia, Q. Wang, S. Ri, and H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system,” Opt. Lett. 42, 4954–4957 (2017).

[Crossref]

Q. Wang, S. Ri, and H. Tsuda, “Digital sampling Moiré as a substitute for microscope scanning Moiré for high sensitivity and full field deformation measurement at micro/nano scales,” Appl. Opt. 55, 6858–6865 (2016).

[Crossref]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

S. Ri and H. Tsuda, “Two-dimensional sampling Moiré method for fast and accurate phase analysis of single fringe pattern,” Proc. SPIE 8769, 876921 (2013).

[Crossref]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling Moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[Crossref]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

M. Servin and F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263–284 (2001).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

P. Xia, Q. Wang, S. Ri, and H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system,” Opt. Lett. 42, 4954–4957 (2017).

[Crossref]

Q. Wang, S. Ri, and H. Tsuda, “Digital sampling Moiré as a substitute for microscope scanning Moiré for high sensitivity and full field deformation measurement at micro/nano scales,” Appl. Opt. 55, 6858–6865 (2016).

[Crossref]

S. Ri and H. Tsuda, “Two-dimensional sampling Moiré method for fast and accurate phase analysis of single fringe pattern,” Proc. SPIE 8769, 876921 (2013).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

P. Xia, Q. Wang, S. Ri, and H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system,” Opt. Lett. 42, 4954–4957 (2017).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

Q. Wang, S. Ri, and H. Tsuda, “Digital sampling Moiré as a substitute for microscope scanning Moiré for high sensitivity and full field deformation measurement at micro/nano scales,” Appl. Opt. 55, 6858–6865 (2016).

[Crossref]

M. Kujawinska and J. Wójciak, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” Proc. SPIE 1508, 61–67 (1991).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[Crossref]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Q. Wang, S. Ri, and H. Tsuda, “Digital sampling Moiré as a substitute for microscope scanning Moiré for high sensitivity and full field deformation measurement at micro/nano scales,” Appl. Opt. 55, 6858–6865 (2016).

[Crossref]

J. Endo, J. Chen, D. Koboyashi, Y. Wada, and H. Fujita, “Transmission laser microscope using the phase-shifting techniques and its application to measurement of optical waveguides,” Appl. Opt. 41, 1308–1314 (2002).

[Crossref]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).

[Crossref]

S. Vanlanduit, J. Vanherzeele, P. Guillaume, B. Cauberghe, and P. Verboven, “Fourier fringe processing by use of an interpolated Fourier-transform technique,” Appl. Opt. 43, 5206–5213 (2004).

[Crossref]

J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).

[Crossref]

M. Gdeisat, D. Burton, and M. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[Crossref]

G. Rajshekhar and P. Rastogi, “Multiple signal classification technique for phase estimation from a fringe pattern,” Appl. Opt. 51, 5869–5875 (2012).

[Crossref]

H. Guo, Q. Yang, and M. Chen, “Local frequency estimation for the fringe pattern with a spatial carrier: principle and applications,” Appl. Opt. 46, 1057–1065 (2007).

[Crossref]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity contrast determination,” Appl. Opt. 46, 4613–4624 (2007).

[Crossref]

J. Xu, Q. Xu, and H. Peng, “Spatial carrier phase-shifting algorithm based on least-squares iteration,” Appl. Opt. 47, 5446–5453 (2008).

[Crossref]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling Moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[Crossref]

V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).

[Crossref]

P. S. Huang, Q. J. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Appl. Opt. 41, 4503–4509 (2002).

[Crossref]

S. Zhang, “High-resolution three-dimensional profilometry with binary phase-shifting methods,” Appl. Opt. 50, 1753–1757 (2011).

[Crossref]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[Crossref]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamics thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling Moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[Crossref]

M. Servin and F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995).

[Crossref]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[Crossref]

J. Buytaert and J. Dirckx, “Study of the performance of 84 phase-shifting algorithms for interferometry,” J. Opt. 40, 114–131 (2011).

[Crossref]

M. Kodera, Q. Wang, S. Ri, H. Tsuda, A. Yoshioka, T. Sugiyama, T. Hamamoto, and N. Miyashita, “Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method,” Jpn. J. Appl. Phys. 57, 04FC04 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, and N. Miyahsita, “Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase,” Nanotechnology 28, 455704 (2017).

[Crossref]

M. Hytch, J. Putaux, and J. Penisson, “Measurement of the displacement field of dislocation to 0.03 Å by electron microscopy,” Nature 423, 270–273 (2003).

[Crossref]

J. A. Ferrari and E. M. Frins, “Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier,” Opt. Commun. 271, 59–64 (2007).

[Crossref]

N. Agarwal and Q. Kemao, “Windowed Fourier ridges as a spatial carrier phase-shifting algorithm,” Opt. Eng. 56, 080501 (2017).

[Crossref]

P. S. Huang, C. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, M. Koyama, and K. Tsuzaki, “Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction,” Opt. Express 25, 13465–13480 (2017).

[Crossref]

C. Wang and F. Da, “Phase demodulation using adaptive windowed Fourier transform based on Hilbert–Huang transform,” Opt. Express 20, 18459–18477 (2012).

[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263–284 (2001).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, iii–x (2012).

[Crossref]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).

[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

L. Huang, C. S. Ng, and A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry,” Opt. Lasers Eng. 50, 529–533 (2012).

[Crossref]

M. Gdeisat, A. Abid, D. Burton, M. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[Crossref]

L. Huang, Q. Kemao, B. Pan, and K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).

[Crossref]

P. H. Chan, P. J. Bryanston-Cross, and S. C. Parker, “Spatial phase stepping method of fringe-pattern analysis,” Opt. Lasers Eng. 23, 343–354 (1995).

[Crossref]

L. Watkins, “Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms,” Opt. Lasers Eng. 50, 1015–1022 (2012).

[Crossref]

Q. Zhang, H. Xie, Z. Liu, and W. Shi, “Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope,” Opt. Lasers Eng. 107, 315–324 (2018).

[Crossref]

Q. Wang, S. Ri, H. Tsuda, and M. Koyama, “Optical full-field strain measurement from wrapped sampling Moiré phase to minimize the influence of defects and its applications,” Opt. Lasers Eng. 110, 155–162 (2018).

[Crossref]

Q. Kemao, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Lasers Eng. 66, 67–73 (2015).

[Crossref]

P. Xia, Q. Wang, S. Ri, and H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system,” Opt. Lett. 42, 4954–4957 (2017).

[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).

[Crossref]

G. Rajshekhar and P. Rastogi, “Fringe demodulation using the two-dimensional phase differencing operator,” Opt. Lett. 37, 4278–4280 (2012).

[Crossref]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011).

[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).

[Crossref]

L. Watkins, S. Tan, and T. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett. 24, 905–907 (1999).

[Crossref]

M. Kujawinska and J. Wójciak, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” Proc. SPIE 1508, 61–67 (1991).

[Crossref]

S. Ri and H. Tsuda, “Two-dimensional sampling Moiré method for fast and accurate phase analysis of single fringe pattern,” Proc. SPIE 8769, 876921 (2013).

[Crossref]

Q. Kemao, Windowed Fringe Pattern Analysis (SPIE, 2013).