Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Object plane detection and phase retrieval from single-shot holograms using multi-wavelength in-line holography

Not Accessible

Your library or personal account may give you access

Abstract

Phase retrieval and the twin-image problem in digital in-line holographic microscopy can be resolved by iterative reconstruction routines. However, recovering the phase properties of an object in a hologram requires an object plane to be chosen correctly for reconstruction. In this work, we present a novel multi-wavelength iterative algorithm to determine the object plane using single-shot holograms recorded at multiple wavelengths in an in-line holographic microscope. Using micro-sized objects, we verify the object positioning capabilities of the method for various shapes and derive the phase information using synthetic and experimental data. Experimentally, we built a compact digital in-line holographic microscopy setup around a standard optical microscope with a regular RGB–CCD camera and acquired holograms of micro-spheres, E. coli, and red blood cells, which are illuminated using three lasers operating at 491 nm, 532 nm, and 633 nm, respectively. We demonstrate that our method provides accurate object plane detection and phase retrieval under noisy conditions, e.g., using low-contrast holograms with an inhomogeneous background. This method allows for automatic positioning and phase retrieval suitable for holographic particle velocimetry, and object tracking in biophysical or colloidal research.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology

Frédéric Jolivet, Fabien Momey, Loïc Denis, Loïc Méès, Nicolas Faure, Nathalie Grosjean, Frédéric Pinston, Jean-Louis Marié, and Corinne Fournier
Opt. Express 26(7) 8923-8940 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.