Abstract

In this paper, the tunable properties of metamaterial absorbers based on 3D Dirac semimetal films (DSFs) in the terahertz (THz) regime are discussed in theory. We consider the absorbers with square-shaped, circular-patch, and cross-shaped resonators. These resonances are theoretically polarization-insensitive at normal incidence because of their 90° rotational symmetry and can achieve perfect absorption in numerical simulation. We then introduce dual-band and broadband absorbers by combining two DSF-based square-shaped (or circular-patch) resonators into one unit cell with different sizes. Unlike with a conventional metal-based absorber, the absorption of a DSF-based absorber can be dynamically tuned by varying the Fermi energy instead of refabricating the structures. Moreover, the DSFs can be regarded as a “Salisbury screen” of an absorber to block the transmission at the THz frequencies, which can be more convenient than graphene in the application of a tunable absorber. Our designs have potential applications in various fields such as sensors, thermal detectors, and imagers.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies

Tongling Wang, Maoyong Cao, Yuping Zhang, and Huiyun Zhang
Opt. Mater. Express 9(4) 1562-1576 (2019)

Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals

Huan Chen, Huiyun Zhang, Maodong Liu, Yunkun Zhao, Xiaohan Guo, and Yuping Zhang
Opt. Mater. Express 7(9) 3397-3407 (2017)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription