Abstract

The measurement of temperature with nanoscale spatial resolution is an emerging new technology, and it has an important impact in various fields. An ideal nanothermometer should not only be accurate, but also applicable over a wide temperature range and under diverse conditions. Furthermore, the measurement time should be short enough to follow the evolution of the system. However, many of the existing techniques are limited by drawbacks such as low sensitivity and fluctuations of fluorescence. Therefore, Planck’s law offers an appealing relation between the absolute temperature of the system under interrogation and the thermal spectrum. Despite this, thermal radiation spectroscopy is unsuitable for far-field nanothermometry, primarily because of the power loss in the near surroundings and a poor spatial resolution.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions

Santiago Palanco, Salvatore Marino, M. Gabás, Shanti Bijani, Luis Ayala, and José R. Ramos-Barrado
Opt. Express 22(4) 3991-3999 (2014)

Nanoscale heating of laser irradiated single gold nanoparticles in liquid

Mitsuhiro Honda, Yuika Saito, Nicholas I Smith, Katsumasa Fujita, and Satoshi Kawata
Opt. Express 19(13) 12375-12383 (2011)

Diode pumped nanoparticle gas laser physics: a preliminary modeling study

Xu Yang, Hongyan Wang, Zining Yang, and Xiaojun Xu
Opt. Express 25(9) 10574-10585 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
    [Crossref]
  2. B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
    [Crossref]
  3. A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
    [Crossref]
  4. G. Baffou, “Thermal microscopy techniques,” in Thermoplasmonics (Cambridge University, 2017), pp. 101–142.
  5. P. Roura and J. Costa, “Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory,” Eur. J. Phys. 23, 191–203 (2002).
    [Crossref]
  6. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  7. P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
    [Crossref]
  8. Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000  K,” Thermochim. Acta 109, 105–109 (1986).
    [Crossref]
  9. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  10. P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
    [Crossref]
  11. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
    [Crossref]
  12. V. P. Pattani and J. W. Tunnel, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
    [Crossref]
  13. G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
    [Crossref]

2015 (2)

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
[Crossref]

2014 (2)

B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
[Crossref]

G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
[Crossref]

2012 (1)

V. P. Pattani and J. W. Tunnel, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[Crossref]

2010 (1)

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref]

2009 (1)

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

2002 (1)

P. Roura and J. Costa, “Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory,” Eur. J. Phys. 23, 191–203 (2002).
[Crossref]

1998 (1)

1995 (1)

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

1986 (1)

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000  K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Akiyama, H.

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000  K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

Baffou, G.

G. Baffou, “Thermal microscopy techniques,” in Thermoplasmonics (Cambridge University, 2017), pp. 101–142.

Bendix, P. M.

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref]

Bertran, E.

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Cole, J. R.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Costa, J.

P. Roura and J. Costa, “Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory,” Eur. J. Phys. 23, 191–203 (2002).
[Crossref]

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
[Crossref]

Djurisic, A. B.

Dmitriev, A.

G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
[Crossref]

Elazar, J. M.

Goodrich, G. P.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
[Crossref]

Halas, N. J.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Jauffred, L.

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Jonsson, G. E.

G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
[Crossref]

Knight, M. W.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
[Crossref]

Linke, H.

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Majewski, M. L.

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Miljkovic, V.

G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
[Crossref]

Mirin, N. A.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Morante, J. R.

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Oddershede, L. B.

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref]

Pattani, V. P.

V. P. Pattani and J. W. Tunnel, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[Crossref]

Rakic, A. D.

Reihani, S. N.

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref]

Roura, P.

P. Roura and J. Costa, “Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory,” Eur. J. Phys. 23, 191–203 (2002).
[Crossref]

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Schmitt, R.

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Staffaroni, M.

A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
[Crossref]

Sulimov, N. A.

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Süzer, Ö.

A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
[Crossref]

Taheri, S. M.-R.

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Takahashi, Y.

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000  K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

Tunnel, J. W.

V. P. Pattani and J. W. Tunnel, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[Crossref]

ACS Nano (1)

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Roura, J. Costa, N. A. Sulimov, J. R. Morante, and E. Bertran, “Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 67, 2830–2832 (1995).
[Crossref]

Eur. J. Phys. (1)

P. Roura and J. Costa, “Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory,” Eur. J. Phys. 23, 191–203 (2002).
[Crossref]

IEEE Trans. Magn. (1)

A. Kinkhabwala, M. Staffaroni, and Ö. Süzer, “Nanoscale thermal mapping of HAMR heads using polymer imprint thermal mapping,” IEEE Trans. Magn. 52, 3300504 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113, 12090–12094 (2009).
[Crossref]

Lasers Surg. Med. (1)

V. P. Pattani and J. W. Tunnel, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[Crossref]

Nano Lett. (2)

L. Jauffred, S. M.-R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale plasmonic devices,” Nano Lett. 14, 648–652 (2014).
[Crossref]

Sci. Rep. (1)

G. E. Jonsson, V. Miljkovic, and A. Dmitriev, “Nanoplasmon-enabled macroscopic thermal management,” Sci. Rep. 4, 5111 (2014).
[Crossref]

Thermochim. Acta (1)

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000  K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

Other (1)

G. Baffou, “Thermal microscopy techniques,” in Thermoplasmonics (Cambridge University, 2017), pp. 101–142.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Absorption, scattering, and extinction cross sections as a function of particle diameter calculated in air by Mie theory [6,7]; for comparison, the extinction cross section for gold in water is also shown.
Fig. 2.
Fig. 2. Spectral radiance over the NIR spectrum for 50°C, 100°C, and 200°C.
Fig. 3.
Fig. 3. Evolution of temperature for gold nanoparticles (200 nm) in vacuum (dashed red curve) irradiated with a 1064 nm NIR laser beam and the corresponding emitted thermal radiation at 470 nm wavelength (solid blue curve).
Fig. 4.
Fig. 4. Dependence of the steady-state emission intensity on the surrounding gas pressure.

Tables (1)

Tables Icon

Table 1. Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P abs ( I L ) = P em ( T ) + c p d T d t ,
P abs = A I L ,
P em = B σ B ( T 4 T R 4 ) ,
I em ( λ ) = ϵ 2 π h c 2 λ 5 ( e h c λ k B T 1 ) ,
A = π R 2 ( 1 e α R ) ,
B = 4 π R 2 ( 1 e α R ) ,
P abs ( I L ) = P em ( T ) + P gas ( T ) ,
P gas 4 π R 2 p 4 π m k B T R k B ( T T R ) 3 2 ,
I em = I 0 e p / p 0 ,

Metrics