Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rigorous electromagnetic theory for waveguide evanescent field fluorescence microscopy

Not Accessible

Your library or personal account may give you access

Abstract

Recently, waveguide evanescent field fluorescence (WEFF) microscopy was introduced and used to image and analyze cell–substrate contacts. Here, we establish a comprehensive electromagnetic theory in a seven-layer structure as a model for a typical waveguide–cell structure appropriate for WEFF microscopy and apply it to quantify cell–waveguide separation distances. First, electromagnetic fields at the various layers of a model waveguide–cell system are derived. Then, we obtain the dispersion relation or characteristic equation for TE modes with a stratified media as a cover. Waveguides supporting a defined number of modes are theoretically designed for conventional, reverse, and symmetric waveguide structures and then various waveguide parameters and the penetration depths of the evanescent fields are obtained. We show that the penetration depth of the evanescent field in a three-layer waveguide–cell structure is always lower than that of a seven-layer structure. Using the derived electromagnetic fields, the background and the excited fluorescence in the waveguide–cell gap, filled with water-soluble fluorophores, are analytically formulated. The effect of the waveguide structures on the fluorescence and the background are investigated for various modes. Numerical results are presented for the background and the stimulated fluorescence as functions of the water gap width for various waveguide structures, which can be used to find the water gap width. The results indicate that the background and excited fluorescence increase by increasing the penetration depth of the evanescent field. In addition, we show that for various guided modes of a conventional waveguide, the electric fields in the cell membrane and the cytoplasm are evanescent and they do not depend on the waveguide structure and the mode number. However, for the reverse symmetry and symmetric waveguide structures, the waves are sinusoidal in the cell membrane and the cytoplasm for the highest-order modes.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Direct characterization of the evanescent field in objective-type total internal reflection fluorescence microscopy

Christian Niederauer, Philipp Blumhardt, Jonas Mücksch, Michael Heymann, Armin Lambacher, and Petra Schwille
Opt. Express 26(16) 20492-20506 (2018)

Evanescent-wave fluorescence microscopy using symmetric planar waveguides

Björn Agnarsson, Saevar Ingthorsson, Thorarinn Gudjonsson, and Kristjan Leosson
Opt. Express 17(7) 5075-5082 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.