Abstract

Tunable high-power diode lasers are key components in various established and emerging applications. In this work, we present a compact hybrid master oscillator power amplifier (MOPA) laser system. The system utilizes a tunable GaAs-based sampled-grating (SG) distributed Bragg reflector (DBR) laser as the master oscillator (MO), which emits around a wavelength of 970 nm in a single longitudinal mode with a spectral width below 20 pm. The SG-DBR laser consists of two SGs, each of which can be thermally tuned with microheaters. By tuning one of the two SGs, a discrete wavelength tuning of 21.1 nm can be obtained with a Vernier mode spacing of about 2.3 nm. By tuning both SGs, 23.5 nm of quasi-continuous tuning is obtained, with a mode spacing of about 115 pm. The coupling of the beam emitted by the MO into a tapered power amplifier provides an amplified output power in the watt range having a nearly diffraction-limited beam with a propagation factor of M1/e22=1.6. The combination of high power and wide wavelength tuning in a compact system makes this light source ideal for, among other things, nonlinear frequency conversion.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extended 9.7  nm tuning range in a MOPA system with a tunable dual grating Y-branch laser

Mahmoud Tawfieq, André Müller, Jörg Fricke, Pietro Della Casa, Peter Ressel, David Feise, Bernd Sumpf, and Günther Tränkle
Opt. Lett. 42(20) 4227-4230 (2017)

Widely tunable 2.3  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing

Ruijun Wang, Stephan Sprengel, Anton Vasiliev, Gerhard Boehm, Joris Van Campenhout, Guy Lepage, Peter Verheyen, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Photon. Res. 6(9) 858-866 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription