Abstract

In advanced semiconductor technology nodes, the forbidden pitch effect induced by the destructive interference between neighboring features always leads to poor printing quality. This effect becomes more prominent when the forbidden pitch structure combines with dense pitch structures, which is called the forbidden-dense-alternate (FDA) structure. To overcome its influence on lithographic performance, the design rules can be revised at the cost of design tolerance. Another method is to optimize the source map with the risk of bringing the performance attenuation onto other patterns. This work demonstrates a retargeting method on the weak point in FDA structures. This method can improve the lithographic performance of FDA structures and allow more tolerance to the source mask optimization and design rules. As a result, more process tuning margin can be reserved for other modules, such as optical proximity correction and process integration, in order to improve the yield.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
193nm Superlens Imaging Structure for 20nm Lithography Node

Zhong Shi, Vladimir Kochergin, and Fei Wang
Opt. Express 17(14) 11309-11314 (2009)

Hybrid source mask optimization for robust immersion lithography

Xu Ma, Chunying Han, Yanqiu Li, Bingliang Wu, Zhiyang Song, Lisong Dong, and Gonzalo R. Arce
Appl. Opt. 52(18) 4200-4211 (2013)

Gradient-based inverse extreme ultraviolet lithography

Xu Ma, Jie Wang, Xuanbo Chen, Yanqiu Li, and Gonzalo R. Arce
Appl. Opt. 54(24) 7284-7300 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  2. N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
    [Crossref]
  3. L.-D. Huang and M. D. Wong, “Optical proximity correction (OPC): friendly maze routing,” in Proceedings of the 41st Annual Design Automation Conference (2004), pp. 186–191.
  4. J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
    [Crossref]
  5. O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).
  6. R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
    [Crossref]
  7. R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
    [Crossref]
  8. X. Ma, C. Han, Y. Li, B. Wu, Z. Song, L. Dong, and G. R. Arce, “Hybrid source mask optimization for robust immersion lithography,” Appl. Opt. 52, 4200–4211 (2013).
    [Crossref]
  9. M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
    [Crossref]
  10. X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
    [Crossref]
  11. B. W. Smith, “Forbidden pitch or duty-free: revealing the causes of across-pitch imaging differences,” Proc. SPIE 5040, 399–407 (2003).
  12. S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
    [Crossref]
  13. M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
    [Crossref]
  14. P. Gupta and A. B. Kahng, “Manufacturing-aware physical design,” Proc. IEEE, 681 (2003).
    [Crossref]
  15. K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
    [Crossref]
  16. Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
    [Crossref]

2015 (1)

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

2014 (1)

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

2013 (1)

2011 (1)

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

2010 (1)

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

2009 (2)

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

2007 (1)

S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
[Crossref]

2005 (1)

R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[Crossref]

2003 (1)

B. W. Smith, “Forbidden pitch or duty-free: revealing the causes of across-pitch imaging differences,” Proc. SPIE 5040, 399–407 (2003).

2002 (1)

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

1997 (1)

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

1994 (1)

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Adam, K.

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

Arce, G. R.

Bagheri, S.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Caldwell, R. F.

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

Cao, Q.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

Capodieci, L.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Chen, C.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Chen, J. F.

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

Chua, G. S.

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Dave, A.

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

Deng, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Dong, L.

Dusa, M. V.

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Endo, T.

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

Feng, Y.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

Fm Chen, J.

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Garofalo, J. G.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Gil, D.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Guo, M.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

Gupta, P.

P. Gupta and A. B. Kahng, “Manufacturing-aware physical design,” Proc. IEEE, 681 (2003).
[Crossref]

Gupta, R.

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

Han, C.

He, Y.

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

Henderson, R. C.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Hsu, S.

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Huang, L.-D.

L.-D. Huang and M. D. Wong, “Optical proximity correction (OPC): friendly maze routing,” in Proceedings of the 41st Annual Design Automation Conference (2004), pp. 186–191.

Jayaram, S.

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

Kahng, A. B.

P. Gupta and A. B. Kahng, “Manufacturing-aware physical design,” Proc. IEEE, 681 (2003).
[Crossref]

Kostelak, R. L.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Krasnoperova, A.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Kundu, S.

S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
[Crossref]

Kye, J.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

LaCour, P.

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

Lafferty, N.

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

Lai, K.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Laidig, T. L.

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

LeHoty, D.

R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[Crossref]

Levinson, H. J.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Li, Y.

Lin, Q.

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Ling, M. L.

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Low, K. K.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Ma, X.

Ma, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Melville, D.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Michael Hsu, C.

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Morgenfeld, B.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Otto, O. W.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Pierrat, C.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Quan, C.

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Rosenbluth, A. E.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Sanyal, A.

S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
[Crossref]

Shi, X.

R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[Crossref]

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Silakov, M.

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

Smith, B. W.

B. W. Smith, “Forbidden pitch or duty-free: revealing the causes of across-pitch imaging differences,” Proc. SPIE 5040, 399–407 (2003).

Socha, R.

R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[Crossref]

Socha, R. J.

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

Song, Z.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

X. Ma, C. Han, Y. Li, B. Wu, Z. Song, L. Dong, and G. R. Arce, “Hybrid source mask optimization for robust immersion lithography,” Appl. Opt. 52, 4200–4211 (2013).
[Crossref]

Sreedhar, A.

S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
[Crossref]

Tabery, C. E.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Tay, C. J.

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Tejnil, E.

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

Tian, K.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Tian, Z.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

Tirapu-Azpiroz, J.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Vaidya, S.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Vasudev, P. K.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Wampler, K. E.

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

Wei, Y.

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

Wong, A. K.-K.

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Wong, M. D.

L.-D. Huang and M. D. Wong, “Optical proximity correction (OPC): friendly maze routing,” in Proceedings of the 41st Annual Design Automation Conference (2004), pp. 186–191.

Wu, B.

Yoshimoto, K.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Yuan, C.

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

Zou, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

Appl. Opt. (1)

J. Comput.-Aided Mater. Des. (1)

S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength lithography and their implications on design,” J. Comput.-Aided Mater. Des. 14, 79–89 (2007).
[Crossref]

J. Micro/Nanolithogr. MEMS MOEMS (1)

M. Guo, Z. Song, Y. Feng, Z. Tian, Q. Cao, and Y. Wei, “Efficient source mask optimization method for reduction of computational lithography cycles and enhancement of process-window predictability,” J. Micro/Nanolithogr. MEMS MOEMS 14, 043507 (2015).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. L. Ling, C. J. Tay, C. Quan, G. S. Chua, and Q. Lin, “Forbidden pitch improvement using modified illumination in lithography,” J. Vac. Sci. Technol. B 27, 85–91 (2009).
[Crossref]

Proc. SPIE (9)

N. Lafferty, Y. He, M. Silakov, T. Endo, and K. Adam, “Full-flow RET creation, comparison, and selection,” Proc. SPIE 9235, 92351Z (2014).
[Crossref]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72712 (2009).
[Crossref]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[Crossref]

X. Shi, S. Hsu, J. Fm Chen, C. Michael Hsu, R. J. Socha, and M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist feature placement,” Proc. SPIE 4689, 985–996 (2002).
[Crossref]

B. W. Smith, “Forbidden pitch or duty-free: revealing the causes of across-pitch imaging differences,” Proc. SPIE 5040, 399–407 (2003).

J. F. Chen, T. L. Laidig, K. E. Wampler, and R. F. Caldwell, “Practical method for full-chip optical proximity correction,” Proc. SPIE 3051, 790–803 (1997).
[Crossref]

O. W. Otto, J. G. Garofalo, K. K. Low, C. Yuan, R. C. Henderson, C. Pierrat, R. L. Kostelak, S. Vaidya, and P. K. Vasudev, “Automated optical proximity correction: a rules-based approach,” Proc. SPIE 2197, 278–293 (1994).

R. Gupta, A. Dave, E. Tejnil, S. Jayaram, and P. LaCour, “Influence of the illumination source on model-based SRAF placement,” Proc. SPIE 7973, 79731U (2011).
[Crossref]

R. Socha, X. Shi, and D. LeHoty, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[Crossref]

Other (3)

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

L.-D. Huang and M. D. Wong, “Optical proximity correction (OPC): friendly maze routing,” in Proceedings of the 41st Annual Design Automation Conference (2004), pp. 186–191.

P. Gupta and A. B. Kahng, “Manufacturing-aware physical design,” Proc. IEEE, 681 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of a FP-dense-alternate (FDA) structure.
Fig. 2.
Fig. 2. Six different types of sources used for forbidden pitch analysis.
Fig. 3.
Fig. 3. DOF, MEEF, ILS, and El curves of through-pitch line-and-space patterns.
Fig. 4.
Fig. 4. DOF at 5% EL variations of through-pitch patterns with different source sigma values.
Fig. 5.
Fig. 5. Aerial image and ILS curve of the weakest 3L FDA structure.
Fig. 6.
Fig. 6. Schematic diagram of retargeting the 3L FDA structure in a metal layer. (a) For the isoline, we increase its width to augment the light throughput. (b) For the midline, all of edge 1, 2, and 3 can be moved out forward simultaneously. (c) For the sideline, we move edge 3 out forward the corresponding width.
Fig. 7.
Fig. 7. Simulation results comparison between preretarget and postretarget FDA structures.
Fig. 8.
Fig. 8. ED (EL-DOF) plot improvements by using the new SMO source with the FDA structure-retargeting method.
Fig. 9.
Fig. 9. PV band improvement on the tightest head-to-head pattern. (a) PV band obtained from the old source. (b) PV band obtained from the new source.

Tables (3)

Tables Icon

Table 1. DOF (nm) at 5% EL of FDA Structures under a Certain SMO Source and Corresponding Lithography Conditions

Tables Icon

Table 2. EL(%) Values of FDA Structures under a Certain SMO Source and Corresponding Lithography Conditions

Tables Icon

Table 3. Selective Size Adjustment Table for FDA Structures

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σfavorite=λ2·NA·Pitch.
ILS=1IEdge·I(x)x|Edge.
(WViaΔedge2overlay)·Hviaminimun coverage area.