Abstract

Hard-target lidars rely on the reflectivity and backscattering properties of topographic targets, which are rather difficult to evaluate, resulting in uncertainties when assessing the performance of the instrument. In this work, backscattering properties and hemispherical reflectance of topographic targets are measured in the visible, near-infrared, and mid-infrared spectral ranges. A laboratory setup mimicking a hard-target lidar is used to measure the backscattered signals at various angles of incidence, which are then fitted using a bidirectional reflectance distribution function Phong model. We show that these results are useful for optimizing active stand-off detection and hard-target lidars and for increasing their overall efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Target reflectance measurements for calibration of lidar atmospheric backscatter data

Michael J. Kavaya, Robert T. Menzies, David A. Haner, Uri P. Oppenheim, and Pierre H. Flamant
Appl. Opt. 22(17) 2619-2628 (1983)

Polarization effects on hard target calibration of lidar systems

Michael J. Kavaya
Appl. Opt. 26(5) 796-804 (1987)

Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar

James D. Spinhirne, S. Chudamani, John F. Cavanaugh, and Jack L. Bufton
Appl. Opt. 36(15) 3475-3490 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53  μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [Crossref]
  2. M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).
  3. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
    [Crossref]
  4. S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
    [Crossref]
  5. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).
  6. P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
    [Crossref]
  7. V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
    [Crossref]
  8. R. Prado and F. Ferreira, “Measurement of albedo and analysis of its influence the surface temperature of building roof materials,” Energy Build. 37, 295–300 (2005).
    [Crossref]
  9. V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
    [Crossref]
  10. M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
    [Crossref]
  11. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, and P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
    [Crossref]
  12. R. Montes and C. Ureña, “An overview of BRDF models,” (2012).
  13. G. J. Ward, “Measuring and modeling anisotropic reflection,” in SIGGRAPH (1992), pp. 265–272.
  14. A. Dür, “An improved normalization for the ward reflectance model,” J. Graph. Tools 11, 51–59 (2011).
    [Crossref]
  15. C. Weitkamp, Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  16. S. Bergin, J. Hodgkinson, D. Francis, and R. P. Tatam, “Integrating cavity based gas cells: a multibeam compensation scheme for pathlength variation,” Opt. Express 24, 13647–13664 (2016).
    [Crossref]
  17. D. A. Haner and R. T. Menzies, “Reflectance characteristics of reference materials used in lidar hard target calibration,” Appl. Opt. 28, 857–864 (1989).
    [Crossref]
  18. H. Henshall and J. Cruickshank, “Reflectance characteristics of selected materials for reference targets for 10.6  μm laser radars,” Appl. Opt. 27, 2748–2755 (1988).
    [Crossref]
  19. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, 2008).
  20. A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
    [Crossref]
  21. B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
    [Crossref]
  22. B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
    [Crossref]
  23. S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
    [Crossref]
  24. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [Crossref]
  25. F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
    [Crossref]
  26. R. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).
  27. S. H. Westin, H. Li, and K. E. Torrance, “A comparison of four BRDF models,” in Eurographics Symposium on Rendering (2004), pp. 1–10.
  28. E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” (2014).
  29. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
    [Crossref]
  30. X. Li and Y. Liang, “Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data,” Appl. Opt. 54, 4750–4759 (2015).
    [Crossref]
  31. A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Eurographics Symposium on Rendering (2005).
  32. A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
    [Crossref]
  33. F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
    [Crossref]

2018 (1)

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

2016 (2)

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

S. Bergin, J. Hodgkinson, D. Francis, and R. P. Tatam, “Integrating cavity based gas cells: a multibeam compensation scheme for pathlength variation,” Opt. Express 24, 13647–13664 (2016).
[Crossref]

2015 (2)

X. Li and Y. Liang, “Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data,” Appl. Opt. 54, 4750–4759 (2015).
[Crossref]

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

2013 (1)

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

2012 (1)

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

2011 (1)

A. Dür, “An improved normalization for the ward reflectance model,” J. Graph. Tools 11, 51–59 (2011).
[Crossref]

2010 (1)

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

2009 (2)

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[Crossref]

2007 (3)

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
[Crossref]

2005 (1)

R. Prado and F. Ferreira, “Measurement of albedo and analysis of its influence the surface temperature of building roof materials,” Energy Build. 37, 295–300 (2005).
[Crossref]

1997 (1)

1989 (1)

1988 (1)

1983 (1)

1982 (1)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

1980 (1)

F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
[Crossref]

1975 (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Ahmed, S.

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

Allen, M. G.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Anselmo, C.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

Bartell, F. O.

F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
[Crossref]

Bergin, S.

Bréon, F. M.

F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
[Crossref]

Bufton, J. L.

Cariou, J.-P.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Castillo, P.

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

Cavanaugh, J. F.

Chancey, S.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Chhabra, A.

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

Chudamani, S.

Coillet, E.

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

Cook, R. L.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

Corrigan, P.

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

Cruickshank, J.

David, G.

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Degli-Esposti, V.

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

Dereniak, E. L.

F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
[Crossref]

Diaz, A.

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

Dür, A.

A. Dür, “An improved normalization for the ward reflectance model,” J. Graph. Tools 11, 51–59 (2011).
[Crossref]

Durand, F.

A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Eurographics Symposium on Rendering (2005).

Earp, A.

A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
[Crossref]

Falciasecca, G.

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

Ferreira, F.

R. Prado and F. Ferreira, “Measurement of albedo and analysis of its influence the surface temperature of building roof materials,” Energy Build. 37, 295–300 (2005).
[Crossref]

Flamant, P. H.

Francis, D.

Franklin, J.

A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
[Crossref]

Frish, M. B.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Fujii, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

Fukuchi, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

Fuschini, F.

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

Galtier, S.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

Grant, I.

F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
[Crossref]

Green, B. D.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Gross, B.

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

Haner, D. A.

Heitz, E.

E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” (2014).

Henshall, H.

Hirano, Y.

Hodgkinson, J.

Huntley, R.

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

Imaki, M.

Jindal, M. K.

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Kameyama, S.

Kavaya, M. J.

Kawakami, S.

Leroy, M.

F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
[Crossref]

Li, H.

S. H. Westin, H. Li, and K. E. Torrance, “A comparison of four BRDF models,” in Eurographics Symposium on Rendering (2004), pp. 1–10.

Li, X.

Liang, Y.

Lwin, M.

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

Maignan, F.

F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
[Crossref]

Matusik, W.

A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Eurographics Symposium on Rendering (2005).

McCluney, R.

R. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).

Menzies, R. T.

Midgley, G.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Miffre, A.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Montes, R.

R. Montes and C. Ureña, “An overview of BRDF models,” (2012).

Moshary, F.

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

Nakajima, M.

Ngan, A.

A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Eurographics Symposium on Rendering (2005).

Oppenheim, U. P.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Platt, U.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, 2008).

Prado, R.

R. Prado and F. Ferreira, “Measurement of albedo and analysis of its influence the surface temperature of building roof materials,” Energy Build. 37, 295–300 (2005).
[Crossref]

Rairoux, P.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Razdan, A. K.

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Rieth, K.

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

Rutherford, J.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Sagar, V.

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Sakaizawa, D.

Sharma, R. K.

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Sivignon, J. F.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

Smith, G. B.

A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
[Crossref]

Spinhirne, J. D.

Stafford-Evans, J.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Stutz, J.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, 2008).

Tatam, R. P.

Thomas, B.

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Torrance, K. E.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

S. H. Westin, H. Li, and K. E. Torrance, “A comparison of four BRDF models,” in Eurographics Symposium on Rendering (2004), pp. 1–10.

Ueno, S.

Ureña, C.

R. Montes and C. Ureña, “An overview of BRDF models,” (2012).

Veerabuthiran, S.

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Vitucci, E.

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

Vladutescu, V.

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

Wainner, R. T.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Ward, G. J.

G. J. Ward, “Measuring and modeling anisotropic reflection,” in SIGGRAPH (1992), pp. 265–272.

Wehnert, P.

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

Weitkamp, C.

C. Weitkamp, Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

Welschinger, J.-Y.

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

Westin, S. H.

S. H. Westin, H. Li, and K. E. Torrance, “A comparison of four BRDF models,” in Eurographics Symposium on Rendering (2004), pp. 1–10.

Wolfe, W. L.

F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
[Crossref]

ACM Trans. Graph. (1)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (2)

A. Diaz, B. Thomas, P. Castillo, B. Gross, and F. Moshary, “Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor,” Appl. Phys. B 122, 121 (2016).
[Crossref]

B. Thomas, A. Miffre, G. David, J.-P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B 108, 689–702 (2012).
[Crossref]

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Energy Build. (1)

R. Prado and F. Ferreira, “Measurement of albedo and analysis of its influence the surface temperature of building roof materials,” Energy Build. 37, 295–300 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (1)

V. Degli-Esposti, F. Fuschini, E. Vitucci, and G. Falciasecca, “Measurement and modeling of scattering from buildings,” IEEE Trans. Antennas Propag. 55, 143–153 (2007).
[Crossref]

J. Graph. Tools (1)

A. Dür, “An improved normalization for the ward reflectance model,” J. Graph. Tools 11, 51–59 (2011).
[Crossref]

J. Mol. Spectrosc. (2)

S. Galtier, C. Anselmo, J.-Y. Welschinger, J. F. Sivignon, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: experimental proof,” J. Mol. Spectrosc. 348, 130–136 (2018).
[Crossref]

B. Thomas, G. David, C. Anselmo, E. Coillet, K. Rieth, A. Miffre, J.-P. Cariou, and P. Rairoux, “Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν3 band,” J. Mol. Spectrosc. 291, 3–8 (2013).
[Crossref]

Lighting Res. Technol. (1)

A. Earp, G. B. Smith, and J. Franklin, “Simplified BRDF of a non-Lambertian diffuse surface,” Lighting Res. Technol. 39, 265–281 (2007).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0-3.45  μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (4)

M. Lwin, P. Corrigan, B. Gross, F. Moshary, and S. Ahmed, “Mid-infrared backscattering measurements of building materials using a quantum cascade laser,” Proc. SPIE 7660, 766043 (2010).
[Crossref]

P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P (2009).
[Crossref]

V. Vladutescu, B. Gross, F. Moshary, and S. Ahmed, “Assessment of a QCL laser approach for the simultaneous measurement of ambient ammonia and ozone,” Proc. SPIE 6760, 676005 (2007).
[Crossref]

F. O. Bartell, E. L. Dereniak, and W. L. Wolfe, “The theory and measurement of bidirectional reflectance distribution functions (BRDF) and bidirectional transmittance distribution function (BTDF),” Proc. SPIE 257, 154–160 (1980).
[Crossref]

Other (11)

R. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).

S. H. Westin, H. Li, and K. E. Torrance, “A comparison of four BRDF models,” in Eurographics Symposium on Rendering (2004), pp. 1–10.

E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” (2014).

F. M. Bréon, F. Maignan, M. Leroy, and I. Grant, “Analysis of hot spot directional signatures measured from space,” J. Geophys. Res.107, AAC1-1–AAC1-15 (2002).
[Crossref]

A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Eurographics Symposium on Rendering (2005).

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

M. B. Frish, R. T. Wainner, J. Stafford-Evans, B. D. Green, M. G. Allen, S. Chancey, J. Rutherford, G. Midgley, and P. Wehnert, “Standoff sensing of natural gas leaks: evolution of the remote methane leak detector (RMLD),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland (Optical Society of America, 2005).

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, 2008).

C. Weitkamp, Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

R. Montes and C. Ureña, “An overview of BRDF models,” (2012).

G. J. Ward, “Measuring and modeling anisotropic reflection,” in SIGGRAPH (1992), pp. 265–272.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Optical layout of the system used to measure the backscattered light of multiple targets at multiple angles of incidence in the visible (0.48 μm), shortwave infrared (1.32 μm), and mid-infrared (7.6 μm).
Fig. 2.
Fig. 2. Schematic of incident and reflected light directions.
Fig. 3.
Fig. 3. Backscattering coefficients measured as a function of the angle of incidence (blue solid line) together with the Phong model fit (red dashed line) for a maple plank with an UV-resistant epoxy-based coating.
Fig. 4.
Fig. 4. Backscattering coefficients measured as a function of the angle of incidence (blue solid line) together with the Phong model fit (red dashed line) for a maple plank without coating.
Fig. 5.
Fig. 5. Backscattering coefficients measured as a function of the angle of incidence (blue solid line) together with the Phong model fit (red dashed line) for a red brick, composed mostly of clay, sand, and concrete materials.
Fig. 6.
Fig. 6. Backscattering coefficients measured as a function of the angle of incidence for asphalt.
Fig. 7.
Fig. 7. Backscattering coefficients measured as a function of the angle of incidence (blue solid line) together with the Phong model fit (red dashed line) for an old concrete brick with dust and urban aerosol deposit on its surface.
Fig. 8.
Fig. 8. Backscattering coefficients measured as a function of the angle of incidence (blue solid line) together with the Phong model fit (red dashed line) for a concrete brick.
Fig. 9.
Fig. 9. Hemispherical reflectance (%) as a function of the wavelength for each target.
Fig. 10.
Fig. 10. Backscattered intensity normalized by the initial laser power I / I 0 as a function of the target range for both the concrete target and the maple plank with coating target. Two angles of incidence are considered, normal and 25°, for both targets in the visible, SWIR, and mid-IR.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G = R RT π π S RT ( θ ) d θ .
R T = R R T π π S T ( θ ) d θ π π S RT ( θ ) d θ = G π π S T ( θ ) d θ .
BRDF ( θ i , ϕ i , θ r , ϕ r ) = d L r ( θ i , ϕ i , θ r , ϕ r ) d E ( θ i , ϕ i ) .
I out = I in ( k d L · N + k s ( R · V ) n ) ,
BRDF ( θ i , ϕ i , θ 0 , ϕ 0 ) = k d L · N + k s ( R · V ) n cos θ i d L i .
I ( r , θ ) = Ω ( r ) I 0 β ( θ ) T ,

Metrics