Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Grey-scale silicon diffractive optics for selective laser ablation of thin conductive films

Not Accessible

Your library or personal account may give you access

Abstract

Laser beam shaping can play a crucial role in improving many laser processes, especially in selective laser patterning of thin films for display devices and solar cells. Typical Gaussian spatial energy distributions can increase damage to the substrate and lead to large crater edge ridges, which are sub-optimal for typical industrial thin film processes. We report on the design, fabrication, and testing of reflective silicon diffractive optics developed for spatial beam shaping at a wavelength of 355 nm. The application of the elements for laser-selective removal of 20 nm indium tin oxide thin films on glass substrates is demonstrated. The design of the phase profile is first generated using the numerical method of computer-generated holography. The phase profiles are realized on a silicon substrate using a novel two-step fabrication technique consisting of a calibrated focused ion beam and an inductively coupled plasma etch. This results in truly grey-scale, blazed diffractive optics, which were analyzed using white light interferometry and atomic force microscopy. Using the diffractive elements with 355 nm nanosecond pulses shows excellent focused spot profiles with a good reproduction of the intended design with a first-order off-axis diffractive efficiency of approximately 80% at a 45 deg angle of incidence.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Cross-sectional TEM study of subsurface damage in SPDT machining of germanium optics

Dušan Korytár, Zdenko Zápražný, Claudio Ferrari, Cesare Frigeri, Matej Jergel, Igor Maťko, and Jozef Kečkeš
Appl. Opt. 57(8) 1940-1943 (2018)

Simple precision measurements of optical beam sizes

Mikis Mylonakis, Saurabh Pandey, Kostas G. Mavrakis, Giannis Drougakis, Georgios Vasilakis, Dimitris G. Papazoglou, and Wolf von Klitzing
Appl. Opt. 57(33) 9863-9867 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.