Abstract

Circular dichroism (CD) is a signal that characterizes the optical properties of chiral structures. Structures with intense CD signals have valuable applications in molecular chemistry, pharmaceuticals, and biosensing. This work proposes the use of a nanowire to increase the CD signal of crossed nanorods. The separation of resonant wavelengths of transmission under left-handed and right-handed circular polarization incidence (LCP and RCP) increases because the electric interaction between the upper nanorod and nanowire under LCP incidence is different from that under RCP incidence. The increased separation of resonant wavelengths, in turn, enhances the CD signals. In addition, two new CD modes appear, and these modes can be tuned by changing the structural parameters of the proposed structure. The present results will guide the design of plasmonic chiral nanostructures for enhancing the CD signal.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Enhanced circular dichroism of double L-shaped nanorods induced by gap plasmon coupling

Zhimin Jing, Yu Bai, Tiankun Wang, Hamad Ullah, Ying Li, and Zhongyue Zhang
J. Opt. Soc. Am. B 36(10) 2721-2726 (2019)

Chiral response of a metasurface composed of nanoholes and tilted nanorods

Tudahong Aba, Yu Qu, Abuduwaili Abudukelimu, Hamad Ullah, and Zhongyue Zhang
Appl. Opt. 58(22) 5936-5941 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription