Abstract

Self-written waveguide (SWW) trajectories fabricated inside a dry photopolymer bulk material, acrylamide/polyvinyl alcohol (AA/PVA), are studied. Their production using both Gaussian and Laguerre–Gauss exposing (writing) light beams, output from optical fibers, is explored. The formation of the primary and secondary eyes is also discussed. Furthermore, the interactions that take place when two counterpropagating beams pass through the photopolymer material (both Gaussian and Laguerre–Gauss) are examined. In all cases experimental and theoretical results are presented. Good agreement between the predictions of the proposed model and experimental observations are demonstrated.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material

Haoyu Li, Yue Qi, James P. Ryle, and John T. Sheridan
Appl. Opt. 53(34) 8086-8094 (2014)

Controlling the trajectories of self-written waveguides in photopolymer

Ra’ed Malallah, Haoyu Li, Inbarasan Muniraj, Derek Cassidy, Nebras Al-Attar, John J. Healy, and John T. Sheridan
J. Opt. Soc. Am. B 35(8) 2046-2056 (2018)

Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer

Haoyu Li, Yue Qi, Ra’ed Malallah, and John T. Sheridan
J. Opt. Soc. Am. B 32(5) 912-922 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
    [Crossref]
  2. H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
    [Crossref]
  3. H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32, 912–922 (2015).
    [Crossref]
  4. H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
    [Crossref]
  5. A. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455–457 (1996).
    [Crossref]
  6. T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
    [Crossref]
  7. T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
    [Crossref]
  8. R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
    [Crossref]
  9. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
    [Crossref]
  10. A. Günther, A. B. Petermann, U. Gleissner, T. Hanemann, E. Reithmeier, M. Rahlves, M. Meinhardt-Wollweber, U. Morgner, and B. Roth, “Cladded self-written multimode step-index waveguides using a one-polymer approach,” Opt. Lett. 40, 1830–1833 (2015).
    [Crossref]
  11. A. M. Ljungström and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78–85 (2002).
    [Crossref]
  12. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [Crossref]
  13. A. Anderson and K. Peters, “Finite element simulation of self-writing waveguide formation through photo-polymerization,” J. Lightwave Technol. 27, 5529–5536 (2009).
    [Crossref]
  14. F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer,” arXiv:physics/0410021 (2004).
  15. A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).
  16. Matlab, 2015, https://uk.mathworks.com/matlabcentral/answers/179150-why-i-got-zero-answer .
  17. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [Crossref]
  18. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [Crossref]
  19. S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. Kivshar, “Self-written waveguides in photopolymerizable regins,” Opt. Lett. 27, 185–187 (2002).
    [Crossref]
  20. K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
    [Crossref]
  21. O. Sugihara, S. Yasuda, B. Cai, K. Komatsu, and T. Kaino, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett. 33, 294–296 (2008).
    [Crossref]
  22. K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
    [Crossref]
  23. Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
    [Crossref]
  24. E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
    [Crossref]
  25. Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
    [Crossref]
  26. E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with phenanthrenequinone,” Opt. Express 22, 3228–3233 (2014).
    [Crossref]
  27. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
    [Crossref]
  28. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [Crossref]
  29. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
    [Crossref]
  30. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
    [Crossref]
  31. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 2004).
  32. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
    [Crossref]
  33. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
    [Crossref]
  34. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [Crossref]
  35. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [Crossref]
  36. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
    [Crossref]
  37. J. Missinne, S. Beri, M. Dash, S. K. Samal, P. Dubruel, J. Watté, and G. V. Steenberge, “Curing kinetics of step-index and graded-index single mode polymer self-written waveguides,” Opt. Mater. Express 4, 1324–1335 (2014).
    [Crossref]
  38. A. M. Ljungström and T. M. Monro, “Exploration of self-writing and photosensitivity in ion-exchanged waveguides,” J. Opt. Soc. Am. B 20, 1317–1325 (2003).
    [Crossref]
  39. E. J. Galvez, Gaussian Beams (Colgate University, 2009).
  40. P. Fulda, “Precision interferometry in a new shape: higher-order Laguerre-Gauss modes for gravitational wave detection,” Doctoral thesis (University of Birmingham, 2012).
  41. A. Bencheikh, M. Fromager, and K. A. Ameur, “Generation of Laguerre-Gaussian LGp0 beams using binary phase diffractive optical elements,” Appl. Opt. 53, 4761–4767 (2014).
    [Crossref]
  42. A. Amphawan and Y. Fazea, “Laguerre-Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays,” J. Eur. Opt. Soc. Rapid Publ. 12, 1–11 (2016).
    [Crossref]
  43. X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
    [Crossref]
  44. H. Li, Y. Dong, P. Xu, Y. Qi, C. Guo, and J. T. Sheridan, “Beam self-cleanup by use of self-written waveguide generated by photopolymerization,” Opt. Lett. 40, 2981–2984 (2015).
    [Crossref]
  45. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
    [Crossref]
  46. M. B. Belgacem, S. Kamoun, M. Gargouri, K. D. Dorkenoo, A. Barsella, and L. Mager, “Light induced self-written waveguides interactions in photopolymer media,” Opt. Express 23, 20841–20848 (2015).
    [Crossref]
  47. J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
    [Crossref]
  48. S. Abe and J. T. Sheridan, “Random fractional Fourier transform: stochastic perturbations along the axis of propagation,” J. Opt. Soc. Am. A 16, 1986–1991 (1999).
    [Crossref]

2017 (1)

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

2016 (1)

A. Amphawan and Y. Fazea, “Laguerre-Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays,” J. Eur. Opt. Soc. Rapid Publ. 12, 1–11 (2016).
[Crossref]

2015 (5)

2014 (6)

2013 (2)

J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
[Crossref]

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

2012 (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

2011 (3)

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[Crossref]

2010 (1)

2009 (4)

2008 (2)

O. Sugihara, S. Yasuda, B. Cai, K. Komatsu, and T. Kaino, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett. 33, 294–296 (2008).
[Crossref]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

2007 (1)

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

2006 (1)

2004 (1)

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

2003 (2)

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

A. M. Ljungström and T. M. Monro, “Exploration of self-writing and photosensitivity in ion-exchanged waveguides,” J. Opt. Soc. Am. B 20, 1317–1325 (2003).
[Crossref]

2002 (3)

2001 (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[Crossref]

1999 (1)

1998 (2)

T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[Crossref]

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

1996 (2)

A. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455–457 (1996).
[Crossref]

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[Crossref]

1993 (1)

1988 (1)

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[Crossref]

Abe, S.

Ameur, K. A.

Amphawan, A.

A. Amphawan and Y. Fazea, “Laguerre-Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays,” J. Eur. Opt. Soc. Rapid Publ. 12, 1–11 (2016).
[Crossref]

Anderson, A.

Arbeloa, E. M.

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

Barsella, A.

Bazylenko, M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

Belgacem, M. B.

Bencheikh, A.

Beri, S.

Berneth, H.

Bertolotti, S. G.

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

Bruder, F.-K.

Bulou, H.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

Cai, B.

Carre, C.

Celeste, A. T. B.

A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).

Close, C. E.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[Crossref]

Crégut, O.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

da Silva, A. L. F.

A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).

Dash, M.

Dong, Y.

Dorkenoo, K.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Dorkenoo, K. D.

M. B. Belgacem, S. Kamoun, M. Gargouri, K. D. Dorkenoo, A. Barsella, and L. Mager, “Light induced self-written waveguides interactions in photopolymer media,” Opt. Express 23, 20841–20848 (2015).
[Crossref]

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Dubruel, P.

Enderlein, J.

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer,” arXiv:physics/0410021 (2004).

Fäcke, T.

Fazea, Y.

A. Amphawan and Y. Fazea, “Laguerre-Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays,” J. Eur. Opt. Soc. Rapid Publ. 12, 1–11 (2016).
[Crossref]

Fort, A.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Frisken, S. J.

Fromager, M.

Fulda, P.

P. Fulda, “Precision interferometry in a new shape: higher-order Laguerre-Gauss modes for gravitational wave detection,” Doctoral thesis (University of Birmingham, 2012).

Gallego, S.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

Galvez, E. J.

E. J. Galvez, Gaussian Beams (Colgate University, 2009).

Gargouri, M.

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behaviour of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Gleeson, M. R.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[Crossref]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[Crossref]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[Crossref]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[Crossref]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[Crossref]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[Crossref]

Gleissner, U.

Günther, A.

Guo, C.

Guo, J.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
[Crossref]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[Crossref]

Guo, L.

X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
[Crossref]

Hanemann, T.

Kaino, T.

Kamoun, S.

Kawata, S.

Kelly, D. P.

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

Kelly, J. V.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[Crossref]

Kewitsch, A. S.

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[Crossref]

A. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455–457 (1996).
[Crossref]

Kivshar, Y.

Komatsu, K.

Kowarschik, R.

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[Crossref]

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Li, H.

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32, 912–922 (2015).
[Crossref]

H. Li, Y. Dong, P. Xu, Y. Qi, C. Guo, and J. T. Sheridan, “Beam self-cleanup by use of self-written waveguide generated by photopolymerization,” Opt. Lett. 40, 2981–2984 (2015).
[Crossref]

H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
[Crossref]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
[Crossref]

Liu, S.

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[Crossref]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[Crossref]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[Crossref]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

Liu, Y.

X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
[Crossref]

Ljungström, A. M.

Lopes, C. E. F.

A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).

Mager, L.

Malallah, R.

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32, 912–922 (2015).
[Crossref]

Matusevich, V.

McLeod, R. R.

Meinhardt-Wollweber, M.

Missinne, J.

Monro, T. M.

A. M. Ljungström and T. M. Monro, “Exploration of self-writing and photosensitivity in ion-exchanged waveguides,” J. Opt. Soc. Am. B 20, 1317–1325 (2003).
[Crossref]

A. M. Ljungström and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78–85 (2002).
[Crossref]

T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[Crossref]

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

Morgner, U.

Moss, D.

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

O’Neill, F. T.

Odian, G.

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 2004).

Pampaloni, F.

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer,” arXiv:physics/0410021 (2004).

Pazetti, M.

A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).

Petermann, A. B.

Peters, K.

Poladian, L.

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[Crossref]

Porcal, G. V.

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

Previtali, C. M.

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

Qi, Y.

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32, 912–922 (2015).
[Crossref]

H. Li, Y. Dong, P. Xu, Y. Qi, C. Guo, and J. T. Sheridan, “Beam self-cleanup by use of self-written waveguide generated by photopolymerization,” Opt. Lett. 40, 2981–2984 (2015).
[Crossref]

H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
[Crossref]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

Rahlves, M.

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[Crossref]

Reithmeier, E.

Rölle, T.

Romanov, O.

Romeo, M.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

Roth, B.

Ryle, J. P.

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
[Crossref]

Sabol, D.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[Crossref]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

Samal, S. K.

Saravanamuttu, K.

J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
[Crossref]

Sheridan, J. T.

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

H. Li, Y. Qi, R. Malallah, and J. T. Sheridan, “Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer,” J. Opt. Soc. Am. B 32, 912–922 (2015).
[Crossref]

H. Li, Y. Dong, P. Xu, Y. Qi, C. Guo, and J. T. Sheridan, “Beam self-cleanup by use of self-written waveguide generated by photopolymerization,” Opt. Lett. 40, 2981–2984 (2015).
[Crossref]

H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
[Crossref]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
[Crossref]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[Crossref]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[Crossref]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[Crossref]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[Crossref]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[Crossref]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[Crossref]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[Crossref]

S. Abe and J. T. Sheridan, “Random fractional Fourier transform: stochastic perturbations along the axis of propagation,” J. Opt. Soc. Am. A 16, 1986–1991 (1999).
[Crossref]

Shoji, S.

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[Crossref]

Steenberge, G. V.

Sterke, C. M.

T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[Crossref]

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

Sugihara, O.

Sukhorukov, A. A.

Tolstik, A.

Tolstik, E.

van Wonderen, A. J.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

Wang, X.

X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
[Crossref]

Watté, J.

Weiser, M.-S.

Xu, P.

Yariv, A.

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[Crossref]

A. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455–457 (1996).
[Crossref]

Yasuda, S.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455–457 (1996).
[Crossref]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[Crossref]

J. Appl. Phys. (3)

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[Crossref]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[Crossref]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

A. Amphawan and Y. Fazea, “Laguerre-Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays,” J. Eur. Opt. Soc. Rapid Publ. 12, 1–11 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (2)

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part I. Theoretical modeling,” J. Opt. 13, 095601 (2011).
[Crossref]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. Experimental results,” J. Opt. 13, 095602 (2011).
[Crossref]

J. Opt. A (1)

J. Guo, J. T. Sheridan, and K. Saravanamuttu, “Extremely intense filaments in large populations of self-trapped incandescent beams: spatially and temporally incoherent rogue waves,” J. Opt. A 15, 035201 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

J. Photochem. Photobiol. A (1)

E. M. Arbeloa, G. V. Porcal, S. G. Bertolotti, and C. M. Previtali, “Effect of the interface on the photophysics of Eosin-Y in reverse micelles,” J. Photochem. Photobiol. A 252, 31–36 (2013).
[Crossref]

Opt. Commun. (1)

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Opt. Eng. (1)

X. Wang, Y. Liu, L. Guo, and H. Li, “Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Opt. Mater. Express (1)

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[Crossref]

Phys. Res. Intern. (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Intern. 2012, 975948 (2012).
[Crossref]

Phys. Rev. E (1)

T. M. Monro, L. Poladian, and C. M. Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[Crossref]

Phys. Rev. Lett. (2)

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[Crossref]

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2 + 1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Polymers (1)

R. Malallah, H. Li, D. P. Kelly, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9, 337 (2017).
[Crossref]

Proc. SPIE (1)

H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, “Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material,” Proc. SPIE 9508, 95080F (2015).
[Crossref]

Other (6)

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer,” arXiv:physics/0410021 (2004).

A. L. F. da Silva, A. T. B. Celeste, M. Pazetti, and C. E. F. Lopes, “Formalism of operators for Laguerre-Gauss modes,” arXiv:1111.0886v1 (2011).

Matlab, 2015, https://uk.mathworks.com/matlabcentral/answers/179150-why-i-got-zero-answer .

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 2004).

E. J. Galvez, Gaussian Beams (Colgate University, 2009).

P. Fulda, “Precision interferometry in a new shape: higher-order Laguerre-Gauss modes for gravitational wave detection,” Doctoral thesis (University of Birmingham, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic diagram of the setup used to monitor SWW formation using two FOCs.
Fig. 2.
Fig. 2. Normalized (a) absorbance (blue dashed curve) and (b) emission (red curve) spectra plotted against wavelength for AA/PVA photopolymer material including EY.
Fig. 3.
Fig. 3. Illustration of an ideal normalization Gaussian light beam intensity: (a) 3D side view and (b) 2D top view (contour plot).
Fig. 4.
Fig. 4. SWW formation in photopolymer material: (a) theoretical prediction I(x,z,t)mW/cm2; and (b) experimental image captured when texp=1200  s and P0=0.5  mW (total power in one input beam).
Fig. 5.
Fig. 5. Numerical simulation for SWW formation in photopolymer material. A single input Gaussian beam is used. texp=1200  s, P0=1.0  mW.
Fig. 6.
Fig. 6. Scheme of light propagations as (a) GRIN, (b) Fourier transform, and (c) SWW.
Fig. 7.
Fig. 7. Interactions of two counterpropagating Gaussian beams forming SWW in photopolymer material using P0=0.5  mW (i.e., the output from each FOC is 0.5 mW). Exposed for five different durations, texp=50, 100, 200, 300, and 600 s. The corresponding simulations (left) and experimental results (right) are shown.
Fig. 8.
Fig. 8. (a) 3D side view and (b) 2D top view (counter plot) of the normalization of light intensity of a LG mode (LG20), which can be excited and output from a multimode optical fiber cable. The annular cross-sectional beams profile is shown.
Fig. 9.
Fig. 9. Effects of LG20 mode beam on the formation of the SWWs for both short (texp=100  s) and long (texp=1200  s) exposure times. (a) Theoretical predictions and (b) corresponding experimental results.
Fig. 10.
Fig. 10. Predicted normalized cross-sectional beam profile inside the material at three different depths (0.2, 5, and 8 mm) when texp=1200  s.
Fig. 11.
Fig. 11. Experimentally observed (a) input (exposing) and (b) output LG mode beam, imaged in the far field when texp=1200  s.
Fig. 12.
Fig. 12. Two simultaneously counterpropagating LG20 mode beams when texp=600  s and P0=0.5  mW (i.e., the output from each FOC is 0.5 mW): (a) numerical simulation, (b) experimental image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

uLG=2πω2(z)exp[r2ω2(z)]exp[i(kr22R(z))tan1(zb)],
[A(x,y,z,t)]t=ka(x,y,z,t)[A(x,y,z,t)].
2Ez2+2ik0n0Ez+2E+2k02n0ΔnE+2k02Δn2E+ik0n0αE=0,
Δn(x,y,z,t)t=AIp(x,y,z,t)(1Δn(x,y,z,t)Δns),

Metrics