Abstract

An approach to the reduction of unwanted interference effects, such as speckle and inhomogeneity, is to generate sequences of uncorrelated effects over the integration period of the sensor such that they are averaged. A moving diffuser is typically used. An innovative deformable mirror technology is presented as an alternative. Through phase randomization it achieves dynamic divergence of illumination without diffraction losses. It is shown to offer a unique combination of advantages over moving diffusers, including optical efficiency, speed, size, and reliability. Various applications are discussed.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction in laser projection displays through angle and wavelength diversity

Trinh-Thi-Kim Tran, Øyvind Svensen, Xuyuan Chen, and Muhammad Nadeem Akram
Appl. Opt. 55(6) 1267-1274 (2016)

Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

Speckle reduction using deformable mirrors with diffusers in a laser pico-projector

Hsuan-An Chen, Jui-Wen Pan, and Zu-Po Yang
Opt. Express 25(15) 18140-18151 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription