Abstract

In the confocal mode, Raman microspectroscopy can profile the biochemical content of biological cells at a subcellular level, and any changes to it by exogenous agents, such as therapeutic drugs or toxicants. As an exploration of the potential of the technique as a high-content, label-free analysis technique, this report reviews work to monitor the spectroscopic signatures associated with the uptake and response pathways of commercial chemotherapeutic agents and polymeric nanoparticles by human lung cells. It is demonstrated that the signatures are reproducible and characteristic of the cellular event, and can be used, for example, to identify the mode of action of the agent as well as the subsequent cell death pathway, and even mechanisms of cellular resistance. Data mining approaches are discussed and a spectralomics approach is proposed.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

Tobias J. Moritz, Douglas S. Taylor, Denise M. Krol, John Fritch, and James W. Chan
Biomed. Opt. Express 1(4) 1138-1147 (2010)

Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques

Annalisa D’Arco, Nadia Brancati, Maria Antonietta Ferrara, Maurizio Indolfi, Maria Frucci, and Luigi Sirleto
Biomed. Opt. Express 7(5) 1853-1864 (2016)

A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy

Gyeong Bok Jung, Young Ju Lee, Gihyun Lee, and Hun-Kuk Park
Biomed. Opt. Express 4(11) 2673-2682 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Lord and N. T. Yu, “Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids,” J. Mol. Biol. 50, 509–524 (1970).
    [Crossref]
  2. M. C. Tobin, “Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin,” Science 161, 68–69 (1968).
    [Crossref]
  3. A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
    [Crossref]
  4. N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
    [Crossref]
  5. G. J. Puppels and J. Breve, “Whole cell studies and tissue characterization by Raman spectroscopy,” in Biomedical Applications of Spectroscopy (Wiley, 1996).
  6. M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
    [Crossref]
  7. C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
    [Crossref]
  8. J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
    [Crossref]
  9. A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
    [Crossref]
  10. T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
    [Crossref]
  11. E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
    [Crossref]
  12. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
    [Crossref]
  13. B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
    [Crossref]
  14. H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
    [Crossref]
  15. H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
    [Crossref]
  16. H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
    [Crossref]
  17. P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
    [Crossref]
  18. K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,” Int. J. Pharm. 417, 151–162 (2011).
    [Crossref]
  19. Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomedicine 8, 545–558 (2012).
    [Crossref]
  20. Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
    [Crossref]
  21. Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
    [Crossref]
  22. E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
    [Crossref]
  23. E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
    [Crossref]
  24. Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
    [Crossref]
  25. X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
    [Crossref]
  26. I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
    [Crossref]
  27. U. Gala and H. Chauhan, “Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development,” Expert Opin. Drug Discovery 10, 187–206 (2015).
    [Crossref]
  28. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
    [Crossref]
  29. B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm Anal. 6, 131–141 (2010).
    [Crossref]
  30. C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
    [Crossref]
  31. I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45, 1958–1979 (2016).
    [Crossref]
  32. L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?” Vib. Spectrosc. 91, 16–30 (2017).
    [Crossref]
  33. C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
    [Crossref]
  34. M. A. Mitry and J. G. Edwards, “Doxorubicin induced heart failure: phenotype and molecular mechanisms,” IJC Heart Vasculature 10, 17–24 (2016).
    [Crossref]
  35. F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
    [Crossref]
  36. J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
    [Crossref]
  37. J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
    [Crossref]
  38. S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
    [Crossref]
  39. O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
    [Crossref]
  40. G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
    [Crossref]
  41. M. Z. Akhter and M. R. Rajeswari, “Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression,” J. Photochem. Photobiol. B 141, 36–46 (2014).
    [Crossref]
  42. K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
    [Crossref]
  43. R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
    [Crossref]
  44. R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
    [Crossref]
  45. Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
    [Crossref]
  46. A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
    [Crossref]
  47. A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin,” Neoplasia 7, 705–713 (2005).
    [Crossref]
  48. A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
    [Crossref]
  49. Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
    [Crossref]
  50. Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
    [Crossref]
  51. P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
    [Crossref]
  52. F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
    [Crossref]
  53. E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
    [Crossref]
  54. S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).
  55. N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
    [Crossref]
  56. B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
    [Crossref]
  57. G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
    [Crossref]
  58. J. M. Zock, “Applications of high content screening in life science research,” Combin. Chem. High Throughput Screening 12, 870–876 (2009).
    [Crossref]
  59. K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
    [Crossref]
  60. U. Liebel and W. Link, “Meeting report: trends and challenges in high content analysis,” Biotechnol. J. 2, 938–940 (2007).
  61. D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
    [Crossref]
  62. A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
    [Crossref]
  63. A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
    [Crossref]
  64. A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
    [Crossref]
  65. J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
    [Crossref]
  66. M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
    [Crossref]
  67. E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
    [Crossref]
  68. E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
    [Crossref]
  69. S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
    [Crossref]
  70. M. A. Maher and H. J. Byrne, “Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles,” Anal. Bioanal. Chem. 408, 5295–5307 (2016).
    [Crossref]
  71. C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
    [Crossref]
  72. M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
    [Crossref]
  73. A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
    [Crossref]
  74. J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
    [Crossref]

2018 (3)

Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
[Crossref]

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
[Crossref]

2017 (6)

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
[Crossref]

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
[Crossref]

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

2016 (8)

M. A. Mitry and J. G. Edwards, “Doxorubicin induced heart failure: phenotype and molecular mechanisms,” IJC Heart Vasculature 10, 17–24 (2016).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
[Crossref]

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45, 1958–1979 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

M. A. Maher and H. J. Byrne, “Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles,” Anal. Bioanal. Chem. 408, 5295–5307 (2016).
[Crossref]

2015 (8)

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

U. Gala and H. Chauhan, “Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development,” Expert Opin. Drug Discovery 10, 187–206 (2015).
[Crossref]

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

2014 (3)

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

M. Z. Akhter and M. R. Rajeswari, “Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression,” J. Photochem. Photobiol. B 141, 36–46 (2014).
[Crossref]

2013 (4)

O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
[Crossref]

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

2012 (6)

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomedicine 8, 545–558 (2012).
[Crossref]

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
[Crossref]

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

2011 (3)

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,” Int. J. Pharm. 417, 151–162 (2011).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

2010 (4)

B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm Anal. 6, 131–141 (2010).
[Crossref]

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

2009 (3)

J. M. Zock, “Applications of high content screening in life science research,” Combin. Chem. High Throughput Screening 12, 870–876 (2009).
[Crossref]

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

2008 (6)

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

2007 (2)

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

U. Liebel and W. Link, “Meeting report: trends and challenges in high content analysis,” Biotechnol. J. 2, 938–940 (2007).

2006 (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

2005 (4)

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin,” Neoplasia 7, 705–713 (2005).
[Crossref]

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

2003 (3)

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

2002 (1)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

1998 (1)

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

1997 (1)

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

1984 (1)

A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
[Crossref]

1974 (1)

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

1970 (2)

A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
[Crossref]

R. C. Lord and N. T. Yu, “Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids,” J. Mol. Biol. 50, 509–524 (1970).
[Crossref]

1968 (1)

M. C. Tobin, “Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin,” Science 161, 68–69 (1968).
[Crossref]

Abou-Gharbia, M.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Akalin, A.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Akhter, M. Z.

M. Z. Akhter and M. R. Rajeswari, “Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression,” J. Photochem. Photobiol. B 141, 36–46 (2014).
[Crossref]

Aladjov, H.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Almond, L. M.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

Al-Tel, T. H.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

Angelow, S.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Ankley, G.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Baatenburg de Jong, R. J.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Baeyens, W.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Bakker Schut, T. C.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Baranska, M.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Barr, H.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Barroso, E. M.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Baurain, R.

A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
[Crossref]

A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
[Crossref]

Bennett, F.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Berry, K.

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Bhat, R. A.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Bird, B.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Bishop, A. E.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Boltz, R. C.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Bonni, A.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Bonni, S.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Bonnier, F.

Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
[Crossref]

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

Borok, Z.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Borowik, A.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Bowlby, M.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Brayden, D. J.

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

Breier, J. M.

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

Breve, J.

G. J. Puppels and J. Breve, “Whole cell studies and tissue characterization by Raman spectroscopy,” in Biomedical Applications of Spectroscopy (Wiley, 1996).

Burgeiro, A.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Burger, K.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Byrne, H. J.

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
[Crossref]

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
[Crossref]

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

M. A. Maher and H. J. Byrne, “Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles,” Anal. Bioanal. Chem. 408, 5295–5307 (2016).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Byrne, S. J.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Cardoso, S.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Carter, G. T.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Carvalho, C.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Carvalho, F. S.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Carvalho, R. A.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Casey, A.

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
[Crossref]

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Caspers, P. J.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Chambers, G.

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Chan, A.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Chang, C.

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomedicine 8, 545–558 (2012).
[Crossref]

Chang, R. C. C.

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

Chauhan, H.

U. Gala and H. Chauhan, “Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development,” Expert Opin. Drug Discovery 10, 187–206 (2015).
[Crossref]

Chen, Y.

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Christensen, D. H.

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Christie-Brown, J.

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Clarke, C.

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

Colaianne, J. J.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Cooper, J. M.

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

Correia, S.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Crandall, E. D.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Crozier, R. A.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Cryan, S.-A.

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

Cuddihy, M.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Cyprian, F.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

Dass, C. R.

O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
[Crossref]

Davies, A. M.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Davoren, M.

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Dawson, K. A.

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

de Juan, A.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

de Knecht, J.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Derewonko, N.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Deveney, M. J.

A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
[Crossref]

Diem, M.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Ding, G. J.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Dorney, J.

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

Dyba, M.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Edwards, J. G.

M. A. Mitry and J. G. Edwards, “Doxorubicin induced heart failure: phenotype and molecular mechanisms,” IJC Heart Vasculature 10, 17–24 (2016).
[Crossref]

Efeoglu, E.

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
[Crossref]

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

Eick, D.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

El-Awady, R. A.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

El-Kareh, A. W.

A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin,” Neoplasia 7, 705–713 (2005).
[Crossref]

Farhane, Z.

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
[Crossref]

Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

Fazlollahi, F.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Feng, X.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Figueroa, B.

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Fischer, P. A.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Fitzpatrick, L. W.

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

Francis, A.

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Freudiger, C. W.

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Fu, D.

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Furihata, C.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

Gala, U.

U. Gala and H. Chauhan, “Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development,” Expert Opin. Drug Discovery 10, 187–206 (2015).
[Crossref]

Gandara, D. R.

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

Garcia, A.

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

Garcia, R.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Gargallo, R.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

Gniadecka, M.

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Golunski, G.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Gordon, K. C.

K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,” Int. J. Pharm. 417, 151–162 (2011).
[Crossref]

Goss, G. D.

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

Goth-Goldstein, R.

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

Gough, A.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Gough, K. M.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Graziani, E. I.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Gruber-Eber, A.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Gun’ko, Y. K.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Hamm-Alvarez, S. F.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Harasim, T.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Hardillo, J. A.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Haswell, S. J.

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

Havrankova, J.

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

Heinzle, E.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Hell, S. W.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Hench, L. L.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Heraud, P.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Hercogova, J.

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Herzog, E.

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Hofman, J.

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

Holder, A. L.

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

Hollon, T.

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Holzel, M.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Huber, J. D.

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

Hutchings, J.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

Huynh, M. A.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Jakobs, S.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Jamieson, L. E.

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

Jan, E.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Jaumot, J.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

Jo, B. H.

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

Jow, F.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Kallaway, C.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

Kastrup, L.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Kataoka, H.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Kawiak, A.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Keating, M.

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

Keating, M. E.

M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
[Crossref]

Kellner, M.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Kendall, C.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Kim, K.-J.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Klambauer, G.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Knief, P.

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

Koehn, F. E.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Koenig, J. L.

A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
[Crossref]

Koljenovic, S.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Kon, M.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Koshland, C. P.

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

Kotov, N. A.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Kremmer, E.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Krishna, C. M.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Kustagi, P.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Landesmann, B.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Lasch, P.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Lewis, S.

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Liang, S.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Liebel, U.

U. Liebel and W. Link, “Meeting report: trends and challenges in high content analysis,” Biotechnol. J. 2, 938–940 (2007).

Limtrakul, P.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Link, W.

U. Liebel and W. Link, “Meeting report: trends and challenges in high content analysis,” Biotechnol. J. 2, 938–940 (2007).

Liu, D.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Lord, R. C.

R. C. Lord and N. T. Yu, “Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids,” J. Mol. Biol. 50, 509–524 (1970).
[Crossref]

Lucas, D.

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

Luijten, M.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Lyng, F. M.

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

MacKay, C.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Magolda, R. L.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Maguire, A.

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Mahadevan-Jansen, A.

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45, 1958–1979 (2016).
[Crossref]

Maher, M. A.

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

M. A. Maher and H. J. Byrne, “Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles,” Anal. Bioanal. Chem. 408, 5295–5307 (2016).
[Crossref]

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

Malamoussi, A.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Manfait, M.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Marchelletta, R.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Marcon, N. E.

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

Mast, H.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Maxwell, G.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

McDonald, L.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

McGoverin, C. M.

K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,” Int. J. Pharm. 417, 151–162 (2011).
[Crossref]

McIntyre, J.

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

Meade, A. D.

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

Meek, M. E.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Meeuwis, C. A.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Mehta, P. J.

B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm Anal. 6, 131–141 (2010).
[Crossref]

Menon, V.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

Mercado, M. L.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Miljkovic, M. B.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Miller, D. K.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Mitry, M. A.

M. A. Mitry and J. G. Edwards, “Doxorubicin induced heart failure: phenotype and molecular mechanisms,” IJC Heart Vasculature 10, 17–24 (2016).
[Crossref]

Molckovsky, A.

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

Moreira, P. I.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Moreno, A. J.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Muhl, B.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Mukherjee, S. P.

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

Mundy, W. R.

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

Naha, P. C.

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

Nawaz, H.

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

Netherton, S. J.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Nielsen, O. F.

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Noordhoek Hegt, V.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Notingher, I.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

O’Brien, P. J.

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

O’Neill, L.

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Oliveira, P. J.

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Orban, M.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Orringer, D. A.

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Oshima, Y.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

Paini, A.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Pangalos, M. N.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Patel, B. D.

B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm Anal. 6, 131–141 (2010).
[Crossref]

Pence, I.

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45, 1958–1979 (2016).
[Crossref]

Perkins, E.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Piosik, J.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Pitchakarn, P.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Pluot, M.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Polak, J. M.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Pong, K.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Pot, I.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Puppels, G. J.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

G. J. Puppels and J. Breve, “Whole cell studies and tissue characterization by Raman spectroscopy,” in Biomedical Applications of Spectroscopy (Wiley, 1996).

Pyne, S. G.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Radio, N. M.

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

Rajeswari, M. R.

M. Z. Akhter and M. R. Rajeswari, “Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression,” J. Photochem. Photobiol. B 141, 36–46 (2014).
[Crossref]

Reinhart, P. H.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Remiszewski, S.

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Remon, J.-P.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Riabowol, K.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Rohrmoser, M.

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

Romanska, H.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Ruan, B.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Rubin, R. A.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Rychlowski, M.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Saber-Ayad, M. M.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

Sammon, A.

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Sandin, P.

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

Santos, M. S.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Santos, R. X.

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Sarker, K. P.

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

Sastraruji, K.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Sato, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

Schiller, J. H.

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

Schmidt, J. A.

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

Secomb, T. W.

A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin,” Neoplasia 7, 705–713 (2005).
[Crossref]

Semreen, M. H.

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

Sewnaik, A.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Shafer, T. J.

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

Shepherd, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Shetty, G.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Shim, M. G.

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

Shinzawa, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

Simpson, J. C.

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

Skarka, A.

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

Skotnicki, J.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Smith, J.

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Smits, R. W.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Sobanski, T.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Sockalingum, G. D.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Song, L. M. W. K.

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

Sriamornsak, P.

O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
[Crossref]

Stone, N.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Sulé-Suso, J.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Tacar, O.

O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
[Crossref]

Takenaka, T.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

Tauler, R.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

Ten Hove, I.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Tobin, M. C.

M. C. Tobin, “Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin,” Science 161, 68–69 (1968).
[Crossref]

Trouet, A.

A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
[Crossref]

A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
[Crossref]

Tu, Q.

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomedicine 8, 545–558 (2012).
[Crossref]

Umsumarng, S.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Ung, A. T.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Van der Weken, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

van Lanschot, C. G.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Vankeirsbilck, T.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Venteo, L.

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Vercauteren, A.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Verdijk, R.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Vergote, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Verpoort, F.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Verrier, S.

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Villeneuve, D.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Vokes, E. E.

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

Volkov, Y.

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

von Schack, D.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Walton, A. G.

A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
[Crossref]

Waters, K. M.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Westphal, V.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Whelan, M.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Willig, K.

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Wilson, B. C.

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

Wittwehr, C.

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Wolvius, E. B.

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Wood, A.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Wood, B.

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

Wood, J.

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

Woziwodzka, A.

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Wsol, V.

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

Wulf, H. C.

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Xie, S.

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Yacobi, N. R.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Yin, H.

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

Yodkeeree, S.

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Yu, A. S. L.

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Yu, N. T.

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

R. C. Lord and N. T. Yu, “Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids,” J. Mol. Biol. 50, 509–524 (1970).
[Crossref]

Zaleska, M. M.

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Zenebergh, A.

A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
[Crossref]

A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
[Crossref]

Zhang, X.

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

Zock, J. M.

J. M. Zock, “Applications of high content screening in life science research,” Combin. Chem. High Throughput Screening 12, 870–876 (2009).
[Crossref]

ACS Nano (2)

P. Sandin, L. W. Fitzpatrick, J. C. Simpson, and K. A. Dawson, “High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells,” ACS Nano 6, 1513–1521 (2012).
[Crossref]

E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, “High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles,” ACS Nano 2, 928–938 (2008).
[Crossref]

Anal. Bioanal. Chem. (3)

Z. Farhane, F. Bonnier, and H. J. Byrne, “Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines,” Anal. Bioanal. Chem. 409, 1333–1346 (2017).
[Crossref]

M. A. Maher and H. J. Byrne, “Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles,” Anal. Bioanal. Chem. 408, 5295–5307 (2016).
[Crossref]

X. Zhang, H. Yin, J. M. Cooper, and S. J. Haswell, “Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques,” Anal. Bioanal. Chem. 390, 833–840 (2008).
[Crossref]

Anal. Methods (1)

E. Efeoglu, M. Keating, J. McIntyre, A. Casey, and H. J. Byrne, “Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy,” Anal. Methods 7, 10000–10017 (2015).
[Crossref]

Analyst (11)

E. Efeoglu, A. Casey, and H. J. Byrne, “In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy,” Analyst 141, 5417–5431 (2016).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, A. Maguire, L. O’Neill, and H. J. Byrne, “Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus,” Analyst 140, 5908–5919 (2015).
[Crossref]

Z. Farhane, F. Bonnier, A. Casey, and H. J. Byrne, “Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin,” Analyst 140, 4212–4223 (2015).
[Crossref]

H. J. Byrne, M. Baranska, G. J. Puppels, N. Stone, B. Wood, K. M. Gough, P. Lasch, P. Heraud, J. Sulé-Suso, and G. D. Sockalingum, “Spectropathology for the next generation: Quo vadis?” Analyst 140, 2066–2073 (2015).
[Crossref]

H. Nawaz, A. Garcia, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Raman micro spectroscopy study of the interaction of vincristine with A549 cells supported by expression analysis of bcl-2 protein,” Analyst 138, 6177–6184 (2013).
[Crossref]

H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” Analyst 136, 2450–2463 (2011).
[Crossref]

P. Knief, C. Clarke, E. Herzog, M. Davoren, F. M. Lyng, A. D. Meade, and H. J. Byrne, “Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity,” Analyst 134, 1182–1191 (2009).
[Crossref]

J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, and H. J. Byrne, “Identifying and localizing intracellular nanoparticles using Raman spectroscopy,” Analyst 137, 1111–1119 (2012).
[Crossref]

M. E. Keating, F. Bonnier, and H. J. Byrne, “Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells,” Analyst 137, 5792–5802 (2012).
[Crossref]

E. Efeoglu, M. A. Maher, A. Casey, and H. J. Byrne, “Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2),” Analyst 142, 3500–3513 (2017).
[Crossref]

E. Efeoglu, A. Casey, and H. J. Byrne, “Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure,” Analyst 142, 3848–3856 (2017).
[Crossref]

Arch. Biochem. Biophys. (1)

N. T. Yu, B. H. Jo, R. C. C. Chang, and J. D. Huber, “Single-crystal Raman spectra of native insulin: structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[Crossref]

Basic Clin. Pharmacol. Toxicol. (1)

S. Umsumarng, P. Pitchakarn, K. Sastraruji, S. Yodkeeree, A. T. Ung, S. G. Pyne, and P. Limtrakul, “Reversal of human multi-drug resistance leukaemic cells by stemofoline derivatives via inhibition of P-glycoprotein function,” Basic Clin. Pharmacol. Toxicol. 116, 390–397 (2015).
[Crossref]

Biochem. Pharmacol. (1)

J. Hofman, A. Skarka, J. Havrankova, and V. Wsol, “Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases,” Biochem. Pharmacol. 96, 168–178 (2015).
[Crossref]

Biochimie (1)

G. Golunski, A. Borowik, N. Derewonko, A. Kawiak, M. Rychlowski, A. Woziwodzka, and J. Piosik, “Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects,” Biochimie 123, 95–102 (2016).
[Crossref]

Biopolymers (2)

I. Notingher, S. Verrier, H. Romanska, A. E. Bishop, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

C. M. Krishna, G. D. Sockalingum, L. Venteo, R. A. Bhat, P. Kustagi, M. Pluot, and M. Manfait, “Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy,” Biopolymers 79, 269–276 (2005).
[Crossref]

Biotechnol. J. (1)

U. Liebel and W. Link, “Meeting report: trends and challenges in high content analysis,” Biotechnol. J. 2, 938–940 (2007).

Br. J. Cancer (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

Calcif. Tissue Res. (1)

A. G. Walton, M. J. Deveney, and J. L. Koenig, “Raman spectroscopy of calcified tissue,” Calcif. Tissue Res. 6, 162–167 (1970).
[Crossref]

Cancer Res. (1)

E. M. Barroso, R. W. Smits, C. G. van Lanschot, P. J. Caspers, I. Ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, “Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,” Cancer Res. 76, 5945–5953 (2016).
[Crossref]

Carbon (1)

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon 45, 1425–1432 (2007).
[Crossref]

Chem. Res. Toxicol. (1)

A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, “Particle-induced artifacts in the MTT and LDH viability assays,” Chem. Res. Toxicol. 25, 1885–1892 (2012).
[Crossref]

Chem. Soc. Rev. (1)

I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45, 1958–1979 (2016).
[Crossref]

Chemom. Intell. Lab. Syst. (1)

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101–110 (2005).
[Crossref]

Combin. Chem. High Throughput Screening (1)

J. M. Zock, “Applications of high content screening in life science research,” Combin. Chem. High Throughput Screening 12, 870–876 (2009).
[Crossref]

Curr. Med. Chem. (1)

C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, and P. I. Moreira, “Doxorubicin: the good, the bad and the ugly effect,” Curr. Med. Chem. 16, 3267–3285 (2009).
[Crossref]

Curr. Pharm Anal. (1)

B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm Anal. 6, 131–141 (2010).
[Crossref]

DNA Repair (Amst) (1)

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells,” DNA Repair (Amst) 37, 1–11 (2016).
[Crossref]

Drug Discov. Today (1)

D. J. Brayden, S.-A. Cryan, K. A. Dawson, P. J. O’Brien, and J. C. Simpson, “High-content analysis for drug delivery and nanoparticle applications,” Drug Discov. Today 20(8), 942–957 (2015).
[Crossref]

Eur. J. Cancer Clin. Oncol. (1)

A. Zenebergh, R. Baurain, and A. Trouet, “Cellular pharmacology of detorubicin and doxorubicin in L1210 cells,” Eur. J. Cancer Clin. Oncol. 20, 115–121 (1984).
[Crossref]

Expert Opin. Drug Discovery (1)

U. Gala and H. Chauhan, “Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development,” Expert Opin. Drug Discovery 10, 187–206 (2015).
[Crossref]

Gastrointest Endosc. (1)

A. Molckovsky, L. M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest Endosc. 57, 396–402 (2003).
[Crossref]

IJC Heart Vasculature (1)

M. A. Mitry and J. G. Edwards, “Doxorubicin induced heart failure: phenotype and molecular mechanisms,” IJC Heart Vasculature 10, 17–24 (2016).
[Crossref]

Int. J. Pharm. (1)

K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,” Int. J. Pharm. 417, 151–162 (2011).
[Crossref]

IUBMB Life (1)

R. A. El-Awady, M. H. Semreen, M. M. Saber-Ayad, F. Cyprian, V. Menon, and T. H. Al-Tel, “The power and potential of doxorubicin-DNA adducts,” IUBMB Life 57, 73–81 (2005).
[Crossref]

J. Biol. Chem. (3)

K. Burger, B. Muhl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, M. Kellner, A. Gruber-Eber, E. Kremmer, M. Holzel, and D. Eick, “Chemotherapeutic drugs inhibit ribosome biogenesis at various levels,” J. Biol. Chem. 285, 12416–12425 (2010).
[Crossref]

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne, A. Gough, R. A. Rubin, and D. K. Miller, “Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system,” J. Biol. Chem. 273, 28897–28905 (1998).
[Crossref]

K. P. Sarker, H. Kataoka, A. Chan, S. J. Netherton, I. Pot, M. A. Huynh, X. Feng, A. Bonni, K. Riabowol, and S. Bonni, “ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells,” J. Biol. Chem. 283, 13269–13279 (2008).
[Crossref]

J. Biomed. Opt. (1)

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[Crossref]

J. Biophoton. (3)

Z. Farhane, F. Bonnier, and H. J. Byrne, “An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy,” J. Biophoton. 11, e201700112 (2018).
[Crossref]

Z. Farhane, H. Nawaz, F. Bonnier, and H. J. Byrne, “In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: towards a new paradigm of spectralomics,” J. Biophoton. 11, e201700258 (2018).
[Crossref]

A. Zenebergh, R. Baurain, and A. Trouet, “Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair,” J. Biophoton. 11, e201700060 (2018).
[Crossref]

J. Clin. Oncol. (1)

J. H. Schiller, D. R. Gandara, G. D. Goss, and E. E. Vokes, “Non-small-cell lung cancer: then and now,” J. Clin. Oncol. 31, 981–983 (2013).
[Crossref]

J. Mol. Biol. (1)

R. C. Lord and N. T. Yu, “Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids,” J. Mol. Biol. 50, 509–524 (1970).
[Crossref]

J. Pharm. Pharmacol. (1)

O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol. 65, 157–170 (2013).
[Crossref]

J. Photochem. Photobiol. B (1)

M. Z. Akhter and M. R. Rajeswari, “Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression,” J. Photochem. Photobiol. B 141, 36–46 (2014).
[Crossref]

Lab. Invest. (1)

B. Bird, M. B. Miljković, S. Remiszewski, A. Akalin, M. Kon, and M. Diem, “Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer,” Lab. Invest. 92, 1358–1373 (2012).
[Crossref]

Med. Res. Rev. (1)

F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, “Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy,” Med. Res. Rev. 34, 106–135 (2014).
[Crossref]

Nanomedicine (2)

Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomedicine 8, 545–558 (2012).
[Crossref]

F. Fazlollahi, S. Angelow, N. R. Yacobi, R. Marchelletta, A. S. L. Yu, S. F. Hamm-Alvarez, Z. Borok, K.-J. Kim, and E. D. Crandall, “Polystyrene nanoparticle trafficking across MDCK-II,” Nanomedicine 7, 588–594 (2011).
[Crossref]

Neoplasia (1)

A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin,” Neoplasia 7, 705–713 (2005).
[Crossref]

Neurosurg. Focus (1)

T. Hollon, S. Lewis, C. W. Freudiger, S. Xie, and D. A. Orringer, “Improving the accuracy of brain tumor surgery via Raman-based technology,” Neurosurg. Focus 40, E9 (2016).
[Crossref]

Photochem. Photobiol. (1)

M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, “Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy,” Photochem. Photobiol. 66, 418–423 (1997).
[Crossref]

Photodiagnosis Photodyn. Therapy (1)

C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, and N. Stone, “Advances in the clinical application of Raman spectroscopy for cancer diagnostics,” Photodiagnosis Photodyn. Therapy 10, 207–219 (2013).
[Crossref]

PLoS One (1)

A. Francis, K. Berry, Y. Chen, B. Figueroa, and D. Fu, “Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy,” PLoS One 12, e0178750 (2017).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Ruan, K. Pong, F. Jow, M. Bowlby, R. A. Crozier, D. Liu, S. Liang, Y. Chen, M. L. Mercado, X. Feng, F. Bennett, D. von Schack, L. McDonald, M. M. Zaleska, A. Wood, P. H. Reinhart, R. L. Magolda, J. Skotnicki, M. N. Pangalos, F. E. Koehn, G. T. Carter, M. Abou-Gharbia, and E. I. Graziani, “Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities,” Proc. Natl. Acad. Sci. USA 105, 33–38 (2008).
[Crossref]

Science (1)

M. C. Tobin, “Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin,” Science 161, 68–69 (1968).
[Crossref]

Technol. Cancer Res. Treat. (1)

J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, and N. Stone, “Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer,” Technol. Cancer Res. Treat. 2, 327–331 (2003).
[Crossref]

Toxicol. Appl. Pharmacol. (1)

S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, and H. J. Byrne, “Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells,” Toxicol. Appl. Pharmacol. 248, 259–268 (2010).
[Crossref]

Toxicol. Lett. (1)

A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicol. Lett. 179, 78–84 (2008).
[Crossref]

Toxicol. Sci. (2)

N. M. Radio, J. M. Breier, T. J. Shafer, and W. R. Mundy, “Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening,” Toxicol. Sci. 105, 106–118 (2008).
[Crossref]

C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, B. Landesmann, M. Luijten, C. MacKay, G. Maxwell, M. E. Meek, A. Paini, E. Perkins, T. Sobanski, D. Villeneuve, K. M. Waters, and M. Whelan, “How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology,” Toxicol. Sci. 155, 326–336 (2017).
[Crossref]

Toxicol. Vitro (1)

M. A. Maher, P. C. Naha, S. P. Mukherjee, and H. J. Byrne, “Numerical simulations of in vitro nanoparticle toxicity—the case of poly(amido amine) dendrimers,” Toxicol. Vitro 28, 1449–1460 (2014).
[Crossref]

TrAC Trends Anal. Chem. (1)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J.-P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Vib. Spectrosc. (1)

L. E. Jamieson and H. J. Byrne, “Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?” Vib. Spectrosc. 91, 16–30 (2017).
[Crossref]

Other (2)

G. J. Puppels and J. Breve, “Whole cell studies and tissue characterization by Raman spectroscopy,” in Biomedical Applications of Spectroscopy (Wiley, 1996).

S. W. Hell, K. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, Handbook of Biological Confocal Microscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Mean spectra of (a) nucleolus, (b) nucleus, and (c) cytoplasm of A549 cell line. Highlighted regions correspond to DNA/RNA and lipids features [20].
Fig. 2.
Fig. 2. PCA of nucleolus, nucleus and cytoplasm in immersion conditions (a) Calu-1 cell line: Cytoplasm ▪ Nucleus ▾ Nucleolus •, (b) Calu-1 differentiating PC loadings, (c) A549 differentiating PC loadings [20].
Fig. 3.
Fig. 3. (a) Structure of Doxorubicin; (b) Raman spectrum of in aqueous solution indicating strong DOX marker bands [21].
Fig. 4.
Fig. 4. (a) Evolution of DOX, represented by the Raman band at 465  cm1, as a function of time for the A549 and Calu-1 cell line for each cellular compartment, nucleolus, nucleus, and cytoplasm. (b) Evolution of selected DNA and RNA features as function of time. Intensities are expressed as percentage according to the maximum value over the three cellular compartments for each cell line and standard deviation corresponds to the spectral variations of the Raman band over the 30 measurements per location [45,46].
Fig. 5.
Fig. 5. Regression coefficients obtained by PLSR analysis for the A549 cell line as a function of drug dose for chemotherapeutic drugs DOX, Cisp (nucleus) and Vinc (nucleus) [46].
Fig. 6.
Fig. 6. Comparison of PCA loadings of 4, 12, and 24 h nanoparticle exposure data sets. Loadings are offset for clarity. The dotted line represents the zero “0” point for each loading and an intensity scale of 00.1 is used for comparison [22].
Fig. 7.
Fig. 7. Spectral Markers of acute toxic response in the cytoplasm of A549 and Calu-1 cells after 24 h exposure to PSNH2 and PAMAM nanoparticles. Positive and negative features of the loadings relate to exposed and unexposed cells, respectively. The 750830  cm1 and above 1000  cm1 region are indicated with highlights. Loadings are offset for clarity. The dotted line represents the zero “0” point for each loading and an intensity scale of 0±0.05 is used for comparison [23,67,68].
Fig. 8.
Fig. 8. Spectral markers of cell death on (a) cancerous and (b) non-cancerous cell lines and cytotoxicity assays, which are found to be related to the changes of these spectral markers. Loadings are offset for clarity. The dotted line represents the zero “0” point for each loading and an intensity scale of 0±0.05 is used for comparison [65].

Metrics