Abstract

The axial resolution of confocal microscopy is not only dependent on optical characteristics but also on the utilized peak extraction algorithms. In previous evaluations of peak extraction algorithms, sample surface height is generally assumed to be zero, and only sampling-noise-induced peak extraction uncertainty was analyzed. Here we propose a sample surface-height-dependent (SHD) evaluation model that takes the combined considerations of sample surface height and noise for comparisons of algorithms’ performances. Monte Carlo simulations were first conducted on the centroid algorithm and several nonlinear fitting algorithms such as the parabola fitting algorithm, Gaussian fitting algorithm, and sinc2 fitting algorithm. Subsequently, the evaluation indicators, including mean peak extraction error and mean uncertainty were suggested for the algorithms’ performance ranking. Finally, experimental verifications of the SHD model were carried out using a fiber-based chromatic confocal system. From our simulations and experiments, we demonstrate that sample surface height is a critical influencing factor in peak extraction computation in terms of both the accuracy and standard deviations. Compared to the conventional standard uncertainty evaluation model, our SHD model can provide a more comprehensive characterization of peak extraction algorithms’ performance and offer a more flexible and consistent reference for algorithm selection.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Corrected parabolic fitting for height extraction in confocal microscopy

Cheng Chen, Jian Wang, Richard Leach, Wenlong Lu, Xiaojun Liu, and Xiangqian (Jane) Jiang
Opt. Express 27(3) 3682-3697 (2019)

Adapative modal decomposition based overlapping-peaks extraction for the thickness measurement in chromatic confocal microscopy

Jiafu Li, Yanlong Zhao, Hua Du, Xiaoping Zhu, Kai Wang, and Mo Zhao
Opt. Express 28(24) 36176-36187 (2020)

Confocal signal evaluation algorithms for surface metrology: uncertainty and numerical efficiency

Maik Rahlves, Bernhard Roth, and Eduard Reithmeier
Appl. Opt. 56(21) 5920-5926 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription