Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bendable large-mode-area fiber with a non-circular core

Not Accessible

Your library or personal account may give you access

Abstract

We investigate mode-area-scaling and bending performances of a Yb-doped large-mode-area fiber with an elongated non-circular core. Such fiber can be bent in the plane of its short axis to suppress bending effects, such as mode area reduction and mode profile distortion. Meanwhile, the other orthogonal axis can be stretched for mode area scaling. Calculations show that for fibers with the same mode area, the higher the aspect ratio between the long axis and short axis, the less sensitive the fiber will be to bending effects. However, mode area scaling is limited by the increased beat length (BL) between the fundamental mode (FM) and the second-order mode, leading to mode degeneracy at higher aspect ratios. Within the 100 mm BL, the FM area is scalable to 3000μm2 in a bent fiber. To facilitate FM operation, we study mode-selective gain through confined doping. Thanks to the small bending distortions, the confined-doping approach works well in the bent large-mode-area fiber. In addition, the advantage of tandem pumping is also discussed in terms of preferential modal gain. A non-circular core fiber with a 41 μm short axis and 120 μm long axis was fabricated in-house. We evaluated the fiber in a linear laser cavity pumped by a 975 nm laser diode. The maximum output power obtained was 191 W, with slope efficiency of approximately 67% with respect to launched pump power. The output signal has good beam qualities with M2 of 1.5 and 3.1, respectively, along the short and long axis.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Junhua Ji, Huaiqin Lin, Raghuraman Sidharthan, Daryl Ho, Yanyan Zhou, Johan Nilsson, and Seongwoo Yoo, "Bendable large-mode-area fiber with a non-circular core: publisher’s note," Appl. Opt. 57, 8518-8518 (2018)
https://opg.optica.org/ao/abstract.cfm?uri=ao-57-29-8518

5 September 2018: A correction was made to the author listing.


More Like This
Bend-resistant large-mode-area photonic crystal fiber with a triangular-core

Xin Wang, Shuqin Lou, and Wenliang Lu
Appl. Opt. 52(18) 4323-4328 (2013)

Detailed study of bending effects in large mode area segmented cladding fibers

Shaoshuo Ma, Tigang Ning, Jing Li, Li Pei, Chuanbiao Zhang, and Xiaodong Wen
Appl. Opt. 55(35) 9954-9960 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.