Abstract

The increasing space debris poses a great threat to in-orbit spacecraft and satellites, because its hypervelocity impact can bring about fatal mechanical and electrical damage to them. This work applies pulsed digital inline holography (DIH) to measure three-dimensional (3D) positions and shapes of the debris clouds generated by the hypervelocity impact in the Whipple shield. Detailed operation procedures of synchronizing the pulse DIH system with the impact event and removing the strong plasma radiation are presented, ensuring the successful capture of the transient state of ultrafast ejecta. Experiments on a 2.25 mm aluminum sphere impacting a 0.5 mm thickness aluminum target plate with a velocity of 3.6 km/s are carried out at the Hypervelocity Impact Research Center of the China Aerodynamics Research and Development Center, and results show that the holographic fringes are clearly recorded and the debris fragments are reconstructed and located accurately, agreeing well with the results measured by laser shadowgraph. This work demonstrates the powerful capability and great potential of DIH in the diagnostics of hypervelocity impact.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Elise M. Hall, Brian S. Thurow, and Daniel R. Guildenbecher
Appl. Opt. 55(23) 6410-6420 (2016)

Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results

Daniel Allano, Mokrane Malek, Françoise Walle, Frédéric Corbin, Gilles Godard, Sébastien Coëtmellec, Bertrand Lecordier, Jean-Marc Foucaut, and Denis Lebrun
Appl. Opt. 52(1) A9-A17 (2013)

Three-dimensional microscopy with phase-shifting digital holography

Tong Zhang and Ichirou Yamaguchi
Opt. Lett. 23(15) 1221-1223 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription