Abstract

We present a theoretical evaluation of a subterahertz (subTHz) system to image through a scattering medium composed of scatterers of sizes close to the wavelength. We specifically study the case of sand grain clouds created by helicopter rotor airflow during landing in arid areas. The different powers received by one pixel of a matrix made of subTHz sensors are identified. Photometric and antenna-based sensors are considered. Besides the thermal contribution to the noise, we focus our attention on the radiation backscattered by the brownout. It appears that a configuration where the source and the camera are distant is the most promising configuration and is realistic for embedded systems.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A technique to measure optical properties of brownout clouds for modeling terahertz propagation

Steven T. Fiorino, Jason A. Deibel, Phillip M. Grice, Markus H. Novak, Julian Spinoza, Lindsay Owens, and Satya Ganti
Appl. Opt. 51(16) 3605-3613 (2012)

Modeling the target acquisition performance of active imaging systems

Richard L. Espinola, Eddie L. Jacobs, Carl E. Halford, Richard Vollmerhausen, and David H. Tofsted
Opt. Express 15(7) 3816-3832 (2007)

Bifocal dual reflector system for active terahertz imaging

Deliang Zhou, Liwei Hou, Yi Yuan, Yuanzhang Zang, Xuecou Tu, Jian Chen, and Peiheng Wu
Appl. Opt. 57(12) 3224-3230 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Davis, “The use of commercial remote sensing predicting helicopter brownout conditions,” Master’s thesis (Naval Postgraduate School, 2007), http://www.dtic.mil/dtic/tr/fulltext/u2/a473870.pdf .
  2. D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.
  3. B. A. Swanson, “Investigating the impacts of particle size and wind speed on brownout,” Master’s thesis (Air Force Institute of Technology, 2015), http://www.dtic.mil/dtic/tr/fulltext/u2/a614925.pdf .
  4. R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
    [Crossref]
  5. A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
    [Crossref]
  6. S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
    [Crossref]
  7. M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.
  8. H. O. Everitt, W. D. Caraway, and J. T. Richard, “Terahertz (THz) radar: a solution for degraded visibility environments (DVE),” (Army Research, Development and Engineering Command Redstone Arsenal United States, 2016).
  9. T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
    [Crossref]
  10. A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
    [Crossref]
  11. S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
    [Crossref]
  12. V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
    [Crossref]
  13. M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
    [Crossref]
  14. C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.
  15. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
  16. R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).
  17. C. Phillips, Computational Study of Rotorcraft Aerodynamics in Ground Effect and Brownout (Defense Advanced Research Projects Agency, 2010).
  18. K. Sudhakar and M. V. Subramanyam, “Evaluation of atmospheric attenuation due to various parameters,” in International Conference on Information Communication and Embedded Systems (ICICES) (IEEE, 2013), pp. 609–612.
  19. K. Sudhakar and M. Subramanyam, “Propagation power loss analysis and evaluation under variant atmospheric conditions,” Glob. J. Res. Eng. 13, 17–20 (2013).
  20. R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.
  21. S. L. Marek, “A computational tool for evaluating THz imaging performance in brownout conditions at land sites throughout the world,” Master’s thesis (Air Force Institute of Technology, 2009), http://www.dtic.mil/dtic/tr/fulltext/u2/a494962.pdf .
  22. S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).
  23. V. Belov, “Statistical modeling of imaging process in active night vision systems with gate-light detection,” Appl. Phys. B 75, 571–576 (2002).
    [Crossref]
  24. V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
    [Crossref]
  25. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (Chapman & Hall, 1964).
  26. G. S. Fishman, Monte Carlo Concepts, Algorithms and Applications (Springer-Verlag, 1996).
  27. Radiocommunication Sector ITU, “Recommendation ITU-R P. 676–11: attenuation by atmospheric gases,” (International Telecommunication Union, 2016).
  28. C. Cowherd, “Sandblaster 2 support of see-through technologies for particulate brownout,” (Midwest Research Institute, 2007).
  29. H. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  30. H. Koschmieder, “Measurements of visibility at Danzig,” Mon. Weather Rev. 58, 439–444 (1930).
    [Crossref]
  31. W. E. K. Middleton, Vision Through the Atmosphere (Springer Berlin Heidelberg, 1957), pp. 254–287.
  32. D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).
  33. F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
    [Crossref]
  34. A. Marshak and A. Davis, 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005), Chap. 3, p. 213.

2017 (2)

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

2016 (3)

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

2015 (1)

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

2014 (1)

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

2013 (2)

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

K. Sudhakar and M. Subramanyam, “Propagation power loss analysis and evaluation under variant atmospheric conditions,” Glob. J. Res. Eng. 13, 17–20 (2013).

2012 (1)

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

2010 (1)

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

2009 (2)

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

2008 (1)

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
[Crossref]

2007 (1)

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).

2002 (1)

V. Belov, “Statistical modeling of imaging process in active night vision systems with gate-light detection,” Appl. Phys. B 75, 571–576 (2002).
[Crossref]

1930 (1)

H. Koschmieder, “Measurements of visibility at Danzig,” Mon. Weather Rev. 58, 439–444 (1930).
[Crossref]

Abramochkin, V. N.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Alexander, N.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Allen, R. C.

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

Appleby, R.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Bartell, R. J.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Belin, E.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
[Crossref]

Belov, V.

V. Belov, “Statistical modeling of imaging process in active night vision systems with gate-light detection,” Appl. Phys. B 75, 571–576 (2002).
[Crossref]

Belov, V. V.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Bergerman, M.

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

Bertuch, T.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

Blanton, W. B.

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

Bohn, M. J.

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Briese, G.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

But, D.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Callejero, C.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Caraway, W. D.

H. O. Everitt, W. D. Caraway, and J. T. Richard, “Terahertz (THz) radar: a solution for degraded visibility environments (DVE),” (Army Research, Development and Engineering Command Redstone Arsenal United States, 2016).

Ceolato, R.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.

Cheng, L. J.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Chervet, P.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Cowherd, C.

C. Cowherd, “Sandblaster 2 support of see-through technologies for particulate brownout,” (Midwest Research Institute, 2007).

Cusumano, S. J.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Davis, A.

A. Marshak and A. Davis, 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005), Chap. 3, p. 213.

A. Davis, “The use of commercial remote sensing predicting helicopter brownout conditions,” Master’s thesis (Naval Postgraduate School, 2007), http://www.dtic.mil/dtic/tr/fulltext/u2/a473870.pdf .

Deal, W. R.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Delplanque, B.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Diakonova, N.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.

Dillon, T. E.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Dorsett, M.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Drewes, J.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Dumont, E.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
[Crossref]

Durand, G.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Essen, H.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

Everitt, H. O.

H. O. Everitt, W. D. Caraway, and J. T. Richard, “Terahertz (THz) radar: a solution for degraded visibility environments (DVE),” (Army Research, Development and Engineering Command Redstone Arsenal United States, 2016).

Fay, P.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Fiorino, S. T.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Fishman, G. S.

G. S. Fishman, Monte Carlo Concepts, Algorithms and Applications (Springer-Verlag, 1996).

Gilmore, P.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Gonzalo, R.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Grice, P. M.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

Gridnev, Y. V.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Hagelen, M.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

Haiducek, J. D.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

Hammersley, J. M.

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (Chapman & Hall, 1964).

Handscomb, D. C.

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (Chapman & Hall, 1964).

Harrity, C.

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

Harrity, C. E.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

Hespel, L.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Huet, T.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Jiang, Z.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Keller, J. D.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Knap, W.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.

Knott, P.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

Koschmieder, H.

H. Koschmieder, “Measurements of visibility at Danzig,” Mon. Weather Rev. 58, 439–444 (1930).
[Crossref]

Kozlov, V. S.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Krizo, M. J.

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Kudryavtsev, A. N.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Lai, R.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Lange, M. D.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Lee, J.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Leong, K.

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

Leong, K. M.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Liu, L.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Loi, K. K.

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

Mackrides, D.

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Mackrides, D. G.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

Marek, S. L.

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

S. L. Marek, “A computational tool for evaluating THz imaging performance in brownout conditions at land sites throughout the world,” Master’s thesis (Air Force Institute of Technology, 2009), http://www.dtic.mil/dtic/tr/fulltext/u2/a494962.pdf .

Marshak, A.

A. Marshak and A. Davis, 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005), Chap. 3, p. 213.

Martin, C.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Martin, R.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

Martin, R. D.

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

McClure, K.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Mei, X. G.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Meilhan, J.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.

Middleton, W. E. K.

W. E. K. Middleton, Vision Through the Atmosphere (Springer Berlin Heidelberg, 1957), pp. 254–287.

Mitra, R.

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

Nötel, D.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Oden, J.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Peichl, M.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Phillips, C.

C. Phillips, Computational Study of Rotorcraft Aerodynamics in Ground Effect and Brownout (Defense Advanced Research Projects Agency, 2010).

Prather, D. W.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Qayyum, J.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Radisic, V.

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

Rahman, S.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Rakhimov, R. F.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Randall, R. M.

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Richard, J. T.

H. O. Everitt, W. D. Caraway, and J. T. Richard, “Terahertz (THz) radar: a solution for degraded visibility environments (DVE),” (Army Research, Development and Engineering Command Redstone Arsenal United States, 2016).

Riviere, N.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Salmon, N.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Samluk, J.

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Sarkozy, S.

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Schramm, E.

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

Schuetz, C.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Schuetz, C. A.

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Shams, M. I. B.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Shi, S.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

Shmargunov, V. P.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Shreve, K.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

Simoens, F.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Singh, S.

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

Spiker, S.

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

Stambler, A.

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

Stein, E. L.

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Subramanyam, M.

K. Sudhakar and M. Subramanyam, “Propagation power loss analysis and evaluation under variant atmospheric conditions,” Glob. J. Res. Eng. 13, 17–20 (2013).

Subramanyam, M. V.

K. Sudhakar and M. V. Subramanyam, “Evaluation of atmospheric attenuation due to various parameters,” in International Conference on Information Communication and Embedded Systems (ICICES) (IEEE, 2013), pp. 609–612.

Sudhakar, K.

K. Sudhakar and M. Subramanyam, “Propagation power loss analysis and evaluation under variant atmospheric conditions,” Glob. J. Res. Eng. 13, 17–20 (2013).

K. Sudhakar and M. V. Subramanyam, “Evaluation of atmospheric attenuation due to various parameters,” in International Conference on Information Communication and Embedded Systems (ICICES) (IEEE, 2013), pp. 609–612.

Swanson, B. A.

B. A. Swanson, “Investigating the impacts of particle size and wind speed on brownout,” Master’s thesis (Air Force Institute of Technology, 2015), http://www.dtic.mil/dtic/tr/fulltext/u2/a614925.pdf .

Taillade, F.

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
[Crossref]

Tanguy, B.

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

Tarasenkov, M. V.

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Tessmann, A.

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

Wachspress, D. A.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Wallace, B.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

Whitehouse, G. R.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Wikner, D.

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).

Wilson, J. P.

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

Wright, A.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

Xing, H. G.

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Yao, P.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

Yoshida, W.

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Yu, K.

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

Zhang, C.

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

Zhang, Y.

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

Appl. Phys. B (1)

V. Belov, “Statistical modeling of imaging process in active night vision systems with gate-light detection,” Appl. Phys. B 75, 571–576 (2002).
[Crossref]

Atmos. Ocean. Opt. (1)

V. V. Belov, V. N. Abramochkin, Y. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Ocean. Opt. 30, 429–434 (2017).
[Crossref]

Electron. Lett. (1)

M. I. B. Shams, Z. Jiang, S. Rahman, J. Qayyum, L. J. Cheng, H. G. Xing, P. Fay, and L. Liu, “Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing,” Electron. Lett. 50, 801–803 (2014).
[Crossref]

Glob. J. Res. Eng. (1)

K. Sudhakar and M. Subramanyam, “Propagation power loss analysis and evaluation under variant atmospheric conditions,” Glob. J. Res. Eng. 13, 17–20 (2013).

IEEE Trans. Microwave Theory Tech. (1)

V. Radisic, K. Leong, C. Zhang, K. K. Loi, and S. Sarkozy, “Demonstration of a micro-integrated sub-millimeter-wave pixel,” IEEE Trans. Microwave Theory Tech. 61, 2949–2955 (2013).
[Crossref]

Meas. Sci. Technol. (1)

F. Taillade, E. Belin, and E. Dumont, “An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results,” Meas. Sci. Technol. 19, 055302 (2008).
[Crossref]

Mon. Weather Rev. (1)

H. Koschmieder, “Measurements of visibility at Danzig,” Mon. Weather Rev. 58, 439–444 (1930).
[Crossref]

Opt. Eng. (1)

S. Sarkozy, J. Drewes, K. M. Leong, R. Lai, X. G. Mei, W. Yoshida, M. D. Lange, J. Lee, and W. R. Deal, “Amplifier based broadband pixel for sub-millimeter wave imaging,” Opt. Eng. 51, 091602 (2012).
[Crossref]

Proc. SPIE (9)

C. A. Schuetz, E. L. Stein, J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F, 2009.

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).

R. Ceolato, B. Tanguy, C. Martin, T. Huet, P. Chervet, G. Durand, N. Riviere, L. Hespel, N. Diakonova, D. But, W. Knap, J. Meilhan, B. Delplanque, J. Oden, and F. Simoens, “Performance evaluation of active sub-terahertz systems in degraded visual environments (DVE),” Proc. SPIE 9839, 983906 (2016).

R. C. Allen, W. B. Blanton, E. Schramm, and R. Mitra, “Strategies for reducing SWAP-C and complexity in DVE sensor systems,” Proc. SPIE 10197, 101970M (2017).
[Crossref]

A. Stambler, S. Spiker, M. Bergerman, and S. Singh, “Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned,” Proc. SPIE 9839, 983904 (2016).
[Crossref]

S. T. Fiorino, P. M. Grice, M. J. Krizo, R. J. Bartell, J. D. Haiducek, and S. J. Cusumano, “Lab measurements to support modeling terahertz propagation in brownout conditions,” Proc. SPIE 7671, 76710W (2010).
[Crossref]

T. E. Dillon, C. A. Schuetz, R. D. Martin, D. G. Mackrides, S. Shi, P. Yao, K. Shreve, C. Harrity, and D. W. Prather, “Passive, real-time millimeter wave imaging for degraded visual environment mitigation,” Proc. SPIE 9471, 947103 (2015).
[Crossref]

A. Wright, R. Martin, C. Schuetz, S. Shi, Y. Zhang, P. Yao, K. Shreve, T. E. Dillon, D. G. Mackrides, C. E. Harrity, and D. W. Prather, “Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging,” Proc. SPIE 9830, 98300C (2016).
[Crossref]

S. T. Fiorino, R. J. Bartell, M. J. Krizo, S. L. Marek, M. J. Bohn, R. M. Randall, and S. J. Cusumano, “A computational tool for evaluating THz imaging performance in brownout or whiteout conditions at land sites throughout the world,” Proc. SPIE 7324, 732410 (2009).

Other (17)

W. E. K. Middleton, Vision Through the Atmosphere (Springer Berlin Heidelberg, 1957), pp. 254–287.

D. W. Prather, N. Alexander, R. Appleby, C. Callejero, R. Gonzalo, D. Nötel, N. Salmon, B. Wallace, M. Peichl, and C. Schuetz, “High-performance passive/active radiometric mmw imaging using thinned arrays (set-135),” (NATO, 2015).

A. Marshak and A. Davis, 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005), Chap. 3, p. 213.

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (Chapman & Hall, 1964).

G. S. Fishman, Monte Carlo Concepts, Algorithms and Applications (Springer-Verlag, 1996).

Radiocommunication Sector ITU, “Recommendation ITU-R P. 676–11: attenuation by atmospheric gases,” (International Telecommunication Union, 2016).

C. Cowherd, “Sandblaster 2 support of see-through technologies for particulate brownout,” (Midwest Research Institute, 2007).

H. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

A. Davis, “The use of commercial remote sensing predicting helicopter brownout conditions,” Master’s thesis (Naval Postgraduate School, 2007), http://www.dtic.mil/dtic/tr/fulltext/u2/a473870.pdf .

D. A. Wachspress, G. R. Whitehouse, J. D. Keller, K. Yu, P. Gilmore, M. Dorsett, and K. McClure, “A high fidelity brownout model for real-time flight simulations and trainers,” presented at the American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009.

B. A. Swanson, “Investigating the impacts of particle size and wind speed on brownout,” Master’s thesis (Air Force Institute of Technology, 2015), http://www.dtic.mil/dtic/tr/fulltext/u2/a614925.pdf .

M. Hagelen, G. Briese, H. Essen, T. Bertuch, P. Knott, and A. Tessmann, “A millimetrewave landing aid approach for helicopters under brown-out conditions,” in IEEE Radar Conference (IEEE, 2008), pp. 1–4.

H. O. Everitt, W. D. Caraway, and J. T. Richard, “Terahertz (THz) radar: a solution for degraded visibility environments (DVE),” (Army Research, Development and Engineering Command Redstone Arsenal United States, 2016).

C. Phillips, Computational Study of Rotorcraft Aerodynamics in Ground Effect and Brownout (Defense Advanced Research Projects Agency, 2010).

K. Sudhakar and M. V. Subramanyam, “Evaluation of atmospheric attenuation due to various parameters,” in International Conference on Information Communication and Embedded Systems (ICICES) (IEEE, 2013), pp. 609–612.

R. Ceolato, N. Diakonova, J. Meilhan, and W. Knap, “Determination of the sub-terahertz attenuation of brownout clouds generated by rotorcraft,” in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2.

S. L. Marek, “A computational tool for evaluating THz imaging performance in brownout conditions at land sites throughout the world,” Master’s thesis (Air Force Institute of Technology, 2009), http://www.dtic.mil/dtic/tr/fulltext/u2/a494962.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic view of the active imaging system. The source of half-aperture θ0 illuminates the scene that is located at a distance D+z0 from the imaging system. The detection system consists in a matrix of pixels located in the image plane of the optical system, which pupil is located at z=0. The half-aperture of one pixel is θr. Only the pixel centered on the optical axis is represented. The distance between the axes of the source and the optical system is dsd. The brownout is in contact with the ground, and its thickness is D. The volume from which the backscattered noise hails is shown in green. It is the intersection between the cones of illumination and detection.
Fig. 2.
Fig. 2. Distribution of brownout particle density with respect to particles’ radii for a large military helicopter [28].
Fig. 3.
Fig. 3. Scattering efficiencies for three frequencies (94 GHz, 0.35 THz, and 0.94 THz) for silica spheres with index of refraction of 1.96.
Fig. 4.
Fig. 4. Scattering and extinction mean free paths for a brownout made of silica spheres deduced from Eqs. (1) and (2) and Mie scattering model for a brownout distribution shown in Fig. 2.
Fig. 5.
Fig. 5. Radiance of the backscattered signal—comparison between Monte Carlo simulation (+ and ×) and analytical model (○ and □). Parameters: P0=1  W, dsc=0, D=30  m, Ag=0.1. (a) Varying θ0 (z0=3  m) 0.28%ϵ7%; (b) varying z0 (θ0=25°) 0.28%ϵ8%.
Fig. 6.
Fig. 6. Radiance of the backscattered noise—comparison between Monte Carlo simulations (+ and ×) and analytical model (○ and □). Parameters: P0=1  W, ds-c=0, D=30  m, Ag=0.1. (a) Varying θ0 (z0=3  m) 0.18%ϵ38%; (b) varying z0 (θ0=25°) 0.18%ϵ27%.
Fig. 7.
Fig. 7. Radiance of the ground, Lg, and the sky, Lsky, per hertz with respect to the frequency.
Fig. 8.
Fig. 8. Power balance for (a) a photometric pixel and (b) an antenna. The backscattered signal, the backscattered noise, and the thermal noise are, respectively, represented with +, ×, and ∗. Parameters: P0=1  W, θ0=25°, z0=3  m, ds-c=0, p=570  μm, Δf=1  GHz.
Fig. 9.
Fig. 9. Comparison of the contrasts between a monostatic (ds-c=0, +) and a bistatic (ds-c=1  m, ×) system and for two values of z0. Parameters: V=30  m, D=30  m, P0=1  W, θ0=25°, p=570  μm. (a) z0=0. (b) z0=3  m.
Fig. 10.
Fig. 10. Comparison of the contrasts between a monostatic (ds-c=0, +) and a bistatic (ds-c=1  m, ×) system and for two values of z0. Parameters: V=10  m, D=30  m, P0=1  W, θ0=25°, p=570  μm. (a) z0=0. (b) z0=3  m.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

1tot=1atm+1sca+1abs,
1sca=ρ(r)rσsca(r)dr,
Vpilot=pilotlogCt,
Lsr=AgGs(z^)P04π2(D+z0)2exp(2(D+z0)tot),
{Gs(r^)=21cosθ0if  r^·r^0cosθ0Gs(r^)=0everywhere else,
Lsr=AgπP02π(1cosθ0)exp(2(D+z0)/tot)(D+z0)2.
u^·Ld(r,u^)+1totLd(r,u^)=Sd(r,u^),
Sd(r,u^)=14πsca4πp(u^u^)Ls(r,u^)du^.
Ld(r,u^)=VG0(rr,u^)Sd(r,u^)dr.
Lg=(1Ag)exp(Dtot)Bf(Tg).
Lsky=Agexp(2Dtot)Bf(Ts(f)).
Psp=LsrSpupπθr2,
Psa=04πLsr(u^)Gr(u^)4πλ2cos(θu^)du^.
Psa=Lsrλ2.
Edr(r)=P04πbs4πGs(r^)cos(θr^)[F(r,r2(r^))F(r,r1(r^))]dr^.
Ed(dsc)=P0ΩpixGs4πbsz0D+z0S(z)Spupexp((dsc2+z2+z)/tot)dsc2+z2dz,
γ=Ptot(Ag)Ptot(At)Ptot(Ag)+Ptot(At),
u^·L(r,u^)+1totL(r,u^)=14πsca4πp(u^u^)L(r,u^)du^+S0(r,u^),
1tot=1atm+1sca+1abs.
L(r,u^)=Ls(r,u^)+Ld(r,u^).
u^·Ls(r,u^)+1totLs(r,u^)=S0(r,u^).
S0(r,u^)=Gs(u^)P04πcosθu^δ(r),
Ls(r,u^)=VG0(rr,u^)S0(r,u^)dr,
G0(r,u^)=exp(r/tot)r2δ(u^+r^).
Ls(r,u^)=Gs(u^)P04π|r|2cosθu^exp(|r|tot)δ(u^+r|r|).
Es(r0)=4πLs(r0,u^)cosθu^du^.
Es(r0)=P0Gs(z^)4π(D+z0)2exp(D+z0tot).
Lsr=AgGs(z^)P04π2(D+z0)2exp(2(D+z0)tot).
u^·Ld(r,u^)+1totLd(r,u^)=14πsca4πp(u^u^)L(r,u^)du^.
u^·Ld(r,u^)+1totLd(r,u^)=14πsca4πp(u^u^)Ls(r,u^)du^.
Sd(r,u^)=14πsca4πp(u^u^)Ls(r,u^)du^.
Sd(r,u^)=14πsca4πp(u^u^)Gs(u^)P04π|r|2cosθu^exp(|r|tot)δ(u^+r|r|)du^.
Sd(r,u^)=p(r^u^)4πscaGs(r^)P04π|r|2cosθr^exp(|r|tot).
Ld(r,u^)=VG0(rr,u^)Sd(r,u^)dr,
Ld(r,u^)=P0(4π)2scaVGs(r^)cos(θr^)p(r^u^)|rr|2|r|2exp(|rr|+|r|tot)δ(u^+rr|rr|)dr,
Edr(r)=4πLd(r,u^)cosθu^du^,
Ed(rpup)=P0(4π)2scaVGs(r^)cos(θr^)p(r^r^pup)|rpupr|2|r|2exp(|rpupr|+|r|tot)dr,
Ed(rpup)=P0(4π)2sca4πGs(r^)p(r^r^pup)cos(θr^){r1(r^)r2(r^)exp((|rpupr|+|r|)/tot)|rpupr|2dr}dr^.
Ed(rpup)=P04πbs4πGs(r^)cos(θr^){F(rpup,r2(r^))F(rpup,r1(r^))}dr^,
F(y,x)=i2|y|sinθexp(2|y|eiθtot){exp(4i|y|sinθtot)Ei[2(|x||y|eiθ)tot]Ei[2(|x||y|eiθ)tot]},
Ed(dsc)=P0ΩpixGs4πbsz0D+z0S(z)Spupexp((dsc2+z2+z)/tot)dsc2+z2dz,

Metrics