Abstract

In this paper, we study the propagation of the frozen wave (FW)-type beams through non-absorbing stratified media and develop a theoretical method capable of providing the desired spatially shaped diffraction-resistant beam in the last material medium. In this context, we also develop a matrix method to deal with stratified media with a large number of layers. Additionally, we undertake some discussion about minimizing reflection of the incident FW beam on the first material interface by using thin films. Our results show that it is indeed possible to obtain the control, on demand, of the longitudinal intensity pattern of a diffraction-resistant beam, even after it undergoes multiple reflections and transmissions at the layer interfaces. Remote sensing, medical and military applications, noninvasive optical measurements, etc., are some fields that can benefit from the method here proposed.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Production of dynamic frozen waves: controlling shape, location (and speed) of diffraction-resistant beams

Tárcio A. Vieira, Marcos R. R. Gesualdi, Michel Zamboni-Rached, and Erasmo Recami
Opt. Lett. 40(24) 5834-5837 (2015)

Diffraction-Attenuation resistant beams in absorbing media

Michel Zamboni-Rached
Opt. Express 14(5) 1804-1809 (2006)

Theory of “frozen waves”: modeling the shape of stationary wave fields

Michel Zamboni-Rached, Erasmo Recami, and Hugo E. Hernández-Figueroa
J. Opt. Soc. Am. A 22(11) 2465-2475 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription