Abstract

In this paper, we present a detailed and rigorous study of cylindrical harmonic Fresnel lenses (HFLs) using the finite difference time domain method (FDTD) and angular spectrum method (ASM). The HFL is a kind of diffractive lens that can have maximum diffraction efficiency at several discrete harmonic wavelengths, which is suitable for some broadband applications. Previous studies on HFLs were investigated mainly in the domain of paraxial approximation. By using our proposed calculation method, we have determined the efficiency, focal length, maximum focus intensity, and full width at half maximum (FWHM) of the focal spot for several harmonic numbers and for F-numbers of 0.5, 1, and 3. To compare with the paraxial approximation, we have presented the response to both s-polarized and p-polarized light with constant refractive index and real dispersive material, BK7. Moreover, we have also analyzed the cases with oblique illumination. We have shown that the harmonic wavelengths do not change with F/# and that the diffraction efficiency and FWHM of the focus increase as F/# increases. New results on harmonic wavelengths shift and oblique angle of incidence response have been detailed.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromatic compensation of programmable Fresnel lenses

María S. Millán, Joaquín Otón, and Elisabet Pérez-Cabré
Opt. Express 14(13) 6226-6242 (2006)

Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation

Elias N. Glytsis, Michael E. Harrigan, Koichi Hirayama, and Thomas K. Gaylord
Appl. Opt. 37(1) 34-43 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription