Abstract

Inspection of solar cells is an important part of their production process because even small defects can cause a significant drop of a whole photovoltaic module performance. LED illuminated lock-in (LEDILIT) and flash-pulse thermographic techniques (FPT) were compared in this study. Lock-in methods are more commonly used for solar cell inspection. The aim of the study was to discover if the FPT is the appropriate method for inspection of defects of multicrystalline solar cells. Experimental setup, inspection results, and advantages/disadvantages of both methods are presented. It is demonstrated that the LEDILIT is the suitable technique for inspection of defects connected with a photovoltaic effect. Local shunts, cracks, and artificial laser-made defects were detected. Only some of the most significant shunts and laser-made defects were identified by the FPT. However, the FPT inspection is much faster than the LEDILIT. The FPT was also able to indicate an inhomogeneity at a bottom layer of a cell, which was not connected with a photovoltaic effect and not revealed by the LEDILIT.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative evaluation of active thermography using contrast-to-noise ratio

M. Švantner, L. Muzika, T. Chmelík, and J. Skála
Appl. Opt. 57(18) D49-D55 (2018)

Comparison of quantitative defect characterization using pulse-phase and lock-in thermography

Christiane Maierhofer, Mathias Röllig, Rainer Krankenhagen, and Philipp Myrach
Appl. Opt. 55(34) D76-D86 (2016)

Nondestructive testing of resistance spot welds using eddy current thermography

Abdoulaye Taram, Cyrielle Roquelet, Philip Meilland, Thomas Dupuy, Christine Kaczynski, Jean-Luc Bodnar, and Thierry Duvaut
Appl. Opt. 57(18) D63-D68 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .
  2. J. A. Tsanakas, L. Ha, and C. Buerhop, “Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges,” Renew. Sustain. Energy Rev. 62, 695–709 (2016).
    [Crossref]
  3. O. Breitenstein, “Illuminated versus dark lock-in thermography investigations of solar cells,” Int. J. Nanopart. 6, 81–92 (2013).
  4. M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).
  5. J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.
  6. V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).
  7. O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.
  8. O. Breitenstein and J. P. Rakotoniaina, “Lock in thermography—a universal tool for local analysis of solar cells,” in 20th European Photovoltaic Solar Energy Conference (2005), Vol. 7, pp. 956–963.
  9. C. Meola, ed., Infrared Thermography Recent Advances and Future Trends (Bentham Science, 2012).
  10. C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
    [Crossref]
  11. M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
    [Crossref]
  12. J. Skála, M. Švantner, J. Tesař, and A. Franc, “Active thermography inspection of protective glass contamination on laser scanning heads,” Appl. Opt. 55, D60–D66 (2016).
    [Crossref]
  13. G. Pitarresi, “Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation,” Exp. Mech. 55, 667–680 (2015).
    [Crossref]
  14. O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography (Springer, 2010), Vol. 10.
  15. O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.
  16. H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
    [Crossref]
  17. S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
    [Crossref]
  18. V. P. Vavilov and D. D. Burleigh, “Review of pulsed thermal NDT: physical principles, theory and data processing,” NDT&E Int. 73, 28–52 (2015).
    [Crossref]
  19. X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
    [Crossref]
  20. Z. Veselý and M. Švantner, “Application of IRNDT method for materials in wide range of thermal diffusivity,” in Proceedings of the 13th International Conference on Quantitative InfraRed Thermography (QIRT) (2016), Vol. 22, pp. 895–901.
  21. C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
    [Crossref]
  22. D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
    [Crossref]
  23. M. Švantner, M. Kučera, E. Smazalová, Š. Houdková, and R. Čerstvý, “Thermal effects of laser marking on microstructure and corrosion properties of stainless steel,” Appl. Opt. 55, D35–D45 (2016).
    [Crossref]
  24. X. P. V. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).
  25. KEITHLEY, “Measuring photovoltaic cell I-V characteristics with the model 2420 sourcemeter instrument,” (2003).

2016 (3)

2015 (5)

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

V. P. Vavilov and D. D. Burleigh, “Review of pulsed thermal NDT: physical principles, theory and data processing,” NDT&E Int. 73, 28–52 (2015).
[Crossref]

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

G. Pitarresi, “Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation,” Exp. Mech. 55, 667–680 (2015).
[Crossref]

V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).

2013 (2)

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
[Crossref]

O. Breitenstein, “Illuminated versus dark lock-in thermography investigations of solar cells,” Int. J. Nanopart. 6, 81–92 (2013).

2011 (1)

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

2006 (1)

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

2002 (2)

X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
[Crossref]

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Altmann, F.

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Amenabar, I.

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

Balageas, D. L.

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Bauer, J.

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

Bendada, A.

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

Bothe, K.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

Breitenstein, O.

O. Breitenstein, “Illuminated versus dark lock-in thermography investigations of solar cells,” Int. J. Nanopart. 6, 81–92 (2013).

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography (Springer, 2010), Vol. 10.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein and J. P. Rakotoniaina, “Lock in thermography—a universal tool for local analysis of solar cells,” in 20th European Photovoltaic Solar Energy Conference (2005), Vol. 7, pp. 956–963.

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

Buerhop, C.

J. A. Tsanakas, L. Ha, and C. Buerhop, “Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges,” Renew. Sustain. Energy Rev. 62, 695–709 (2016).
[Crossref]

Burger, B.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Burleigh, D. D.

V. P. Vavilov and D. D. Burleigh, “Review of pulsed thermal NDT: physical principles, theory and data processing,” NDT&E Int. 73, 28–52 (2015).
[Crossref]

Cerstvý, R.

Chiminelli, A.

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

Dantz, D.

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Franc, A.

Galmiche, F.

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
[Crossref]

Gerber, A.

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

Gonzalez, D.

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

Gorbach, A. M.

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Gupta, S. C.

V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).

Ha, L.

J. A. Tsanakas, L. Ha, and C. Buerhop, “Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges,” Renew. Sustain. Energy Rev. 62, 695–709 (2016).
[Crossref]

Hinken, D.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

Houdková, Š.

Huber, A.

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Huth, S.

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Ibarra-Castanedo, C.

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
[Crossref]

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

Jahn, U.

M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).

Kiefer,

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Kontges, M.

M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).

Kost, C.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Kucera, M.

Kurtz, S.

M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).

Kwapil, W.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

Lambert, U.

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Langenkamp, M.

O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography (Springer, 2010), Vol. 10.

Lario, A.

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

Leroy, F.-H.

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Liu, W.-M.

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Lizaranzu, M.

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

Maldague, X.

X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
[Crossref]

Maldague, X. P.

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

Maldague, X. P. V.

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
[Crossref]

X. P. V. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).

Muller, J.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

Müller, J.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

Nold, S.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Packard, C.

M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).

Philipps, S.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Physics, M.

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

Pitarresi, G.

G. Pitarresi, “Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation,” Exp. Mech. 55, 667–680 (2015).
[Crossref]

Planck, M.

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

Preu, R.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Rakotoniaina, J. P.

O. Breitenstein and J. P. Rakotoniaina, “Lock in thermography—a universal tool for local analysis of solar cells,” in 20th European Photovoltaic Solar Energy Conference (2005), Vol. 7, pp. 956–963.

Rentsch, J.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Roche, J.-M.

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Sawle, Y.

V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).

Schlegl, T.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Schubert, M. C.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

Siegloch, M.

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

Skála, J.

Smazalová, E.

Straube, H.

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

Stryi-Hipp, G.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Švantner, M.

Tamrakar, V.

V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).

Tarpani, J. R.

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
[Crossref]

Tesar, J.

Tsanakas, J. A.

J. A. Tsanakas, L. Ha, and C. Buerhop, “Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges,” Renew. Sustain. Energy Rev. 62, 695–709 (2016).
[Crossref]

Vavilov, V. P.

V. P. Vavilov and D. D. Burleigh, “Review of pulsed thermal NDT: physical principles, theory and data processing,” NDT&E Int. 73, 28–52 (2015).
[Crossref]

Veselý, Z.

Z. Veselý and M. Švantner, “Application of IRNDT method for materials in wide range of thermal diffusivity,” in Proceedings of the 13th International Conference on Quantitative InfraRed Thermography (QIRT) (2016), Vol. 22, pp. 895–901.

Wagner, J.

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

Warmuth, W.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Warta, W.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography (Springer, 2010), Vol. 10.

Willeke, G.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Wirth, H.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

Ziadi, A.

X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
[Crossref]

Appl. Opt. (2)

Biocybern. Biomed. Eng. (1)

D. L. Balageas, J.-M. Roche, F.-H. Leroy, W.-M. Liu, and A. M. Gorbach, “The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images,” Biocybern. Biomed. Eng. 35, 1–9 (2015).
[Crossref]

Electr. Comput. Eng. (1)

V. Tamrakar, S. C. Gupta, and Y. Sawle, “Single-diode and two-diode PV cell modeling using Matlab for studying characteristics of solar cell under varying conditions,” Electr. Comput. Eng. 4, 67–77 (2015).

Eur. J. Phys. (1)

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys. 34, S91–S109 (2013).
[Crossref]

Exp. Mech. (1)

G. Pitarresi, “Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation,” Exp. Mech. 55, 667–680 (2015).
[Crossref]

Infrared Phys. Technol. (2)

M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive testing of composite materials by means of active thermography-based tools,” Infrared Phys. Technol. 71, 113–120 (2015).
[Crossref]

X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Phys. Technol. 43, 175–181 (2002).
[Crossref]

Int. J. Nanopart. (1)

O. Breitenstein, “Illuminated versus dark lock-in thermography investigations of solar cells,” Int. J. Nanopart. 6, 81–92 (2013).

NDT&E Int. (1)

V. P. Vavilov and D. D. Burleigh, “Review of pulsed thermal NDT: physical principles, theory and data processing,” NDT&E Int. 73, 28–52 (2015).
[Crossref]

Phys. Status Solidi (1)

H. Straube, M. Siegloch, A. Gerber, J. Bauer, and O. Breitenstein, “Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells,” Phys. Status Solidi 8, 1339–1341 (2011).
[Crossref]

Proc. SPIE (1)

C. Ibarra-Castanedo, D. Gonzalez, F. Galmiche, X. P. Maldague, and A. Bendada, “Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data,” Proc. SPIE 6205, 620514 (2006).
[Crossref]

Renew. Sustain. Energy Rev. (1)

J. A. Tsanakas, L. Ha, and C. Buerhop, “Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges,” Renew. Sustain. Energy Rev. 62, 695–709 (2016).
[Crossref]

Solid State Phenom. (1)

S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, “Lock-in IR-thermography–a novel tool for material and device characterization,” Solid State Phenom. 82–84, 741–746 (2002).
[Crossref]

Other (11)

O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography (Springer, 2010), Vol. 10.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, M. C. Schubert, and W. Warta, “Can luminescence imaging replace lock-in thermography on solar cells and wafers?” in 37th IEEE Photovoltaic Specialists Conference (2011), Vol. 1, pp. 159–167.

B. Burger, Kiefer, C. Kost, S. Nold, S. Philipps, R. Preu, J. Rentsch, T. Schlegl, G. Stryi-Hipp, G. Willeke, H. Wirth, and W. Warmuth, Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems ISE, 2018), pp. 1–45, https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf .

M. Kontges, S. Kurtz, C. Packard, and U. Jahn, “Review of failures of photovoltaic modules,” (International Energy Agency, 2014).

J. Bauer, O. Breitenstein, J. Wagner, M. Planck, and M. Physics, “Lock-in thermography: a versatile tool for failure analysis of solar cells,” in 40th International Test Conference (2009), pp. 6–12.

O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M. C. Schubert, and W. Warta, “Luminescence imaging versus lock-in thermography on solar cells and wafers,” in 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), Vol. 1, pp. 1031–1038.

O. Breitenstein and J. P. Rakotoniaina, “Lock in thermography—a universal tool for local analysis of solar cells,” in 20th European Photovoltaic Solar Energy Conference (2005), Vol. 7, pp. 956–963.

C. Meola, ed., Infrared Thermography Recent Advances and Future Trends (Bentham Science, 2012).

Z. Veselý and M. Švantner, “Application of IRNDT method for materials in wide range of thermal diffusivity,” in Proceedings of the 13th International Conference on Quantitative InfraRed Thermography (QIRT) (2016), Vol. 22, pp. 895–901.

X. P. V. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).

KEITHLEY, “Measuring photovoltaic cell I-V characteristics with the model 2420 sourcemeter instrument,” (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. General structure of a solar cell.
Fig. 2.
Fig. 2. Schematic illustration of artificial defects and their locations on solar cells no. 1 and no. 2.
Fig. 3.
Fig. 3. Flash-pulse thermographic inspection configuration: (1) the infrared camera, (2) a tested sample, and (3) and the flash-lamp, i.e., the flash light excitation source.
Fig. 4.
Fig. 4. LED lock-in thermographic inspection configuration: (1) the infrared camera, (2) a tested sample, and (3) LED reflector, i.e., excitation source.
Fig. 5.
Fig. 5. Results of FPT (phase results) and LEDILIT (DPR, phase results) inspections of solar cell no. 1 before and after the creation of the artificial defect by the laser.
Fig. 6.
Fig. 6. Current–voltage curves of tested solar cell no. 1 before and after creation of artificial defect.
Fig. 7.
Fig. 7. Results of FPT (phase results) and LEDILIT (DPR phase results) inspections of solar cell no. 2 before and after creation of artificial defect by the laser. White arrows by LEDLIT (original image) point to cracks.
Fig. 8.
Fig. 8. Current–voltage curves of tested solar cell no. 2 before and after the artificial defect was made.
Fig. 9.
Fig. 9. Solar cell no. 3: photography of the cell from top and bottom side, FPT inspection defectogram and LEDILIT defectogram.

Tables (1)

Tables Icon

Table 1. Laser Parameters Table

Metrics