Abstract

A rule of thumb, denoted as IGA-rule 17, has been developed to describe the temperature and cutoff wavelength-dependent dark currents of wavelength-extended InGaAs photodetectors in a 2–3 μm band. The validity and limitations of the rule are discussed. This rule is intended as an index for device developers to evaluate their technologies in processing, a simple tool for device users to estimate reachable performance at various conditions in their design, and an effective bridge between the two.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature operation of mid-infrared InAs0.81Sb0.19 based photovoltaic detectors with an In0.2Al0.8Sb barrier layer grown on GaAs substrates

Dae-Myeong Geum, SangHyeon Kim, SooSeok Kang, Hosung Kim, Hwanyeol Park, Il Pyo Rho, Seung Yeop Ahn, Jindong Song, Won Jun Choi, and Euijoon Yoon
Opt. Express 26(5) 6249-6259 (2018)

Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors

Yingjie Ma, Yonggang Zhang, Yi Gu, Xingyou Chen, Suping Xi, Ben Du, and Hsby Li
Opt. Express 23(15) 19278-19287 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
    [Crossref]
  2. Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
    [Crossref]
  3. http://www.teledynejudson.com/prods/Documents/PB4206.pdf .
  4. http://www.hamamatsu.com/resources/pdf/ssd/g12181_series_kird1117e.pdf , http://www.hamamatsu.com/resources/pdf/ssd/g12182_series_kird1118e.pdf , http://www.hamamatsu.com/resources/pdf/ssd/g12183_series_kird1119e.pdf .
  5. Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
    [Crossref]
  6. Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
    [Crossref]
  7. S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
    [Crossref]
  8. X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
    [Crossref]
  9. Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
    [Crossref]
  10. http://www.teledynejudson.com/prods/Documents/PB220.pdf .
  11. http://www.teledynejudson.com/prods/Documents/PVMCT_shortform_Nov2003.pdf .

2017 (2)

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

2015 (1)

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

2014 (1)

Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
[Crossref]

2009 (1)

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

2008 (1)

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

1991 (1)

S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
[Crossref]

Arslan, Y.

Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
[Crossref]

Basu, P. K.

S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
[Crossref]

Besikci, C.

Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
[Crossref]

Carmody, M.

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Chen, X. Y.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Fang, J. X.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Gong, H. M.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Gu, Y.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Huang, S. L.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Huang, Z. C.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Lee, D.

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Li, A. Z.

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Li, H.

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Li, T.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Li, X.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Ma, Y. J.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Oguz, F.

Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
[Crossref]

Paul, S.

S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
[Crossref]

Piquette, E.

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Roy, J. B.

S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
[Crossref]

Shao, X. M.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Tang, H. J.

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Tennant, W. E.

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Tian, Z. B.

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Wang, K.

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Xi, S. P.

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Zandian, M.

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Zhang, Y. G.

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Zhou, L.

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

Zhu, X. R.

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Appl. Phys. Express (1)

Y. Gu, L. Zhou, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, and H. Li, “Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier,” Appl. Phys. Express 8, 022202 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Arslan, F. Oguz, and C. Besikci, “640 × 512 extended short wavelength infrared In0.83Ga0.17As focal plane array,” IEEE J. Quantum Electron. 50, 957–964 (2014).
[Crossref]

Infrared Phys. Technol. (3)

X. Li, H. M. Gong, J. X. Fang, X. M. Shao, H. J. Tang, S. L. Huang, T. Li, and Z. C. Huang, “The development of InGaAs short wavelength infrared focal plane arrays with high performance,” Infrared Phys. Technol. 80, 112–119 (2017).
[Crossref]

Y. G. Zhang, Y. Gu, Z. B. Tian, A. Z. Li, X. R. Zhu, and K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination,” Infrared Phys. Technol. 52, 52–56 (2009).
[Crossref]

Y. G. Zhang, Y. Gu, X. Y. Chen, Y. J. Ma, X. Li, X. M. Shao, H. M. Gong, and J. X. Fang, “An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies,” Infrared Phys. Technol. 83, 45–50 (2017).
[Crossref]

J. Appl. Phys. (1)

S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs,” J. Appl. Phys. 69, 827–829 (1991).
[Crossref]

J. Electron. Mater. (1)

W. E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by ‘rule 07’, a very convenient heuristic,” J. Electron. Mater. 37, 1406–1410 (2008).
[Crossref]

Other (4)

http://www.teledynejudson.com/prods/Documents/PB220.pdf .

http://www.teledynejudson.com/prods/Documents/PVMCT_shortform_Nov2003.pdf .

http://www.teledynejudson.com/prods/Documents/PB4206.pdf .

http://www.hamamatsu.com/resources/pdf/ssd/g12181_series_kird1117e.pdf , http://www.hamamatsu.com/resources/pdf/ssd/g12182_series_kird1118e.pdf , http://www.hamamatsu.com/resources/pdf/ssd/g12183_series_kird1119e.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Plotting of dark current density versus reciprocal cutoff wavelength temperature product of Judson [3] and Hamamatsu [4] wavelength-extended photodiodes. Solid line shows IGA-rule 17.
Fig. 2.
Fig. 2. Plotting of dark current density versus reciprocal cutoff wavelength and temperature product of our works [5,6]. Solid line shows IGA-rule 17.
Fig. 3.
Fig. 3. Cutoff wavelength versus operation temperature of wavelength-extended InGaAs photodetector using high indium composition InxGa1xAs as the absorption layer.
Fig. 4.
Fig. 4. Calculated IGA-rule 17 performance dependence of cutoff wavelength at different operation temperatures. (a) Dark current density, (b) R0A, (c) peak detectivity.
Fig. 5.
Fig. 5. Plotting of dark current density versus reciprocal cutoff wavelength temperature product of Ref. [9], as well as Judson lattice-matched In0.53Ga0.47As [3], InAs [10], and MCT [11] photodiodes; solid line shows IGA-rule 17.

Tables (1)

Tables Icon

Table 1. Fitted Parameters from Different Categories Including Our Works, under the Frame of IGA-Rule 17

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Js=J0eC1.24qk×1λcT.
Js=300×e0.75×1.24qk×1λcT.
R0A=kT/qJ0eC1.24qk×1λcT,
Dλp*(R0A)=ηλpqhcR0A4kTλcq4hcR0AkT,
Eg(x,T)=1.521.575x+0.475x2+(5.8T+3004.19T+271)104T2x(5.8T+271)104T2.
Js(T2)Js(T1)=eC1.24qk(1λcT21λcT1),
R0A(T2)R0A(T1)=T2T1eC1.24qk(1λcT21λcT1),
Dλp*(T2)Dλp*(T1)=λcλceC21.24qk(1λcT21λcT1).
Js=J0eC1.24qk×1λcT×[1(λsλcλsλt)P].

Metrics