Abstract

A hyperspectral imaging system based on compressed sensing has been developed to image in the 0.9–2.5 μm shortwave infrared wavelengths. With a programmable digital micromirror device utilized as spatial light modulator, we have successfully performed spectrally resolved image reconstruction with a 256-element InGaAs linear array detector without traditional raster scanning or a push-broom mechanism by a compressed sensing (CS) single-pixel camera approach. The chemical sensitivity of the imaging sensor to near-infrared (NIR) overtone signatures of hydrocarbons was demonstrated using hydrocarbon and ink patterns on glass, showing spectral selectivity for the chemical components. Compared to point-by-point raster scanning, we show that the CS scheme can effectively accelerate image acquisition with lower but reasonable quality.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extended-field coverage hyperspectral camera based on a single-pixel technique

Senlin Jin, Wangwei Hui, Bo Liu, Cuifeng Ying, Dongqi Liu, Qing Ye, Wenyuan Zhou, and Jianguo Tian
Appl. Opt. 55(18) 4808-4813 (2016)

Compressive hyperspectral imaging recovery by spatial-spectral non-local means regularization

Pablo Meza, Ivan Ortiz, Esteban Vera, and Javier Martinez
Opt. Express 26(6) 7043-7055 (2018)

Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device

Brian Vohnsen, Alessandra Carmichael Martins, Salihah Qaysi, and Najnin Sharmin
Appl. Opt. 57(22) E199-E204 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription