Abstract

We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·1013·τ1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-pumped atomic clock exploiting pressure-broadened optical transitions

James Camparo, John Coffer, and Jeremy Townsend
J. Opt. Soc. Am. B 22(3) 521-528 (2005)

Frequency stability of a pulsed optically pumped atomic clock with narrow Ramsey linewidth

Haixiao Lin, Jianliao Deng, Jinda Lin, Song Zhang, and Yuzhu Wang
Appl. Opt. 57(12) 3056-3060 (2018)

Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks

I. Ben-Aroya, M. Kahanov, and G. Eisenstein
Opt. Express 15(23) 15060-15065 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu and E. Ikegami, “Frequency stabilisation of 1.5  μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25, 22–23 (1989).
    [Crossref]
  2. M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
    [Crossref]
  3. Y. Han, S. Guo, J. Wang, H. Liu, J. He, and J. Wang, “Efficient frequency doubling of a telecom 1560  nm laser in a waveguide and frequency stabilization to Rb D2 line,” Chin. Opt. Lett. 12, 121401 (2014).
    [Crossref]
  4. R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709–1713 (2003).
    [Crossref]
  5. H. C. Chui, Y. W. Liu, J. T. Shy, S. Y. Shaw, R. V. Roussev, and M. M. Fejer, “Frequency-stabilized 1520-nm diode laser with rubidium 5S1/2 → 7S1/2 two-photon absorption,” Appl. Opt. 43, 6348–6351 (2004).
    [Crossref]
  6. S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.
  7. T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
    [Crossref]
  8. F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
    [Crossref]
  9. J. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33–39 (2007).
    [Crossref]
  10. J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B 87, 565–593 (2007).
    [Crossref]
  11. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [Crossref]
  12. G. Mileti and P. Thomann, “Study of the S/N performance of passive atomic clocks using a laser pumped vapour,” in Proceedings of European Frequency and Time Forum (1995), pp. 271–276.
  13. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” J. Opt. Soc. Am. B 15, 1177–1186 (1998).
    [Crossref]
  14. T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
    [Crossref]
  15. F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
    [Crossref]
  16. M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
    [Crossref]
  17. R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40, 2576–2579 (2015).
    [Crossref]
  18. N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).
  19. C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
    [Crossref]
  20. B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
    [Crossref]
  21. J. Vanier and C. Tomescu, The Quantum Physics of Atomic Frequency Standards: Recent Developments (CRC Press, 2016), pp. 287–295.
  22. S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
    [Crossref]
  23. J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
    [Crossref]
  24. M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
    [Crossref]

2017 (3)

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

2015 (1)

2014 (3)

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

Y. Han, S. Guo, J. Wang, H. Liu, J. He, and J. Wang, “Efficient frequency doubling of a telecom 1560  nm laser in a waveguide and frequency stabilization to Rb D2 line,” Chin. Opt. Lett. 12, 121401 (2014).
[Crossref]

2012 (3)

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

2007 (2)

J. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33–39 (2007).
[Crossref]

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B 87, 565–593 (2007).
[Crossref]

2004 (1)

2003 (1)

1999 (1)

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

1998 (1)

1997 (1)

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

1989 (1)

M. Ohtsu and E. Ikegami, “Frequency stabilisation of 1.5  μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25, 22–23 (1989).
[Crossref]

1968 (1)

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Abdel Hafiz, M.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

Affolderbach, C.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

Almat, N.

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

Antoni-Micollier, L.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

Aveline, D. C.

Bandi, T.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

Berthon, J.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

Bidel, Y.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Boudot, R.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

Bresson, A.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Cadoret, M.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Calosso, C. E.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Camparo, J.

J. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33–39 (2007).
[Crossref]

Camparo, J. C.

Chui, H. C.

Coget, G.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

Crane, S.

S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.

Cyr, N.

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

de Clercq, E.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

de Rooij, N.

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

Deng, J. Q.

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

Dieu, E.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Drullinger, R. E.

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

Ekstrom, C. R.

S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.

Faure, B.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

Fejer, M. M.

Godone, A.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Gruet, F.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40, 2576–2579 (2015).
[Crossref]

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

Guérandel, S.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

Guo, S.

Han, Y.

Happer, W.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

He, J.

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Ikegami, E.

M. Ohtsu and E. Ikegami, “Frequency stabilisation of 1.5  μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25, 22–23 (1989).
[Crossref]

Jennings, D. A.

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

Latrasse, C.

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

Lévèque, T.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

Levi, F.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Liu, H.

Liu, Y. W.

Lundblad, N.

Maleki, L.

Mandache, C.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B 87, 565–593 (2007).
[Crossref]

Mathur, B. S.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Matthey, R.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40, 2576–2579 (2015).
[Crossref]

Merli, F.

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

Micalizio, S.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Mileti, G.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

R. Matthey, F. Gruet, S. Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region,” Opt. Lett. 40, 2576–2579 (2015).
[Crossref]

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

G. Mileti and P. Thomann, “Study of the S/N performance of passive atomic clocks using a laser pumped vapour,” in Proceedings of European Frequency and Time Forum (1995), pp. 271–276.

Moreno, W.

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

Ohtsu, M.

M. Ohtsu and E. Ikegami, “Frequency stabilisation of 1.5  μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25, 22–23 (1989).
[Crossref]

Peil, S.

S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.

Pellaton, M.

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

Pétremand, Y.

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

Poulin, M.

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

Roussev, R. V.

Schilt, S.

Shaw, S. Y.

Shy, J. T.

Skrivervik, A. K.

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

Stefanucci, C.

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

Swanson, T.

S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.

Tang, H.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Tetu, M.

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

Theron, F.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Thomann, P.

G. Mileti and P. Thomann, “Study of the S/N performance of passive atomic clocks using a laser pumped vapour,” in Proceedings of European Frequency and Time Forum (1995), pp. 271–276.

Thompson, R. J.

Tomescu, C.

J. Vanier and C. Tomescu, The Quantum Physics of Atomic Frequency Standards: Recent Developments (CRC Press, 2016), pp. 287–295.

Tu, M.

Vanier, J.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B 87, 565–593 (2007).
[Crossref]

J. Vanier and C. Tomescu, The Quantum Physics of Atomic Frequency Standards: Recent Developments (CRC Press, 2016), pp. 287–295.

Walls, F. L.

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

Wang, J.

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Yun, P.

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

Zahzam, N.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B 116, 997–1004 (2014).
[Crossref]

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B 87, 565–593 (2007).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

M. Ohtsu and E. Ikegami, “Frequency stabilisation of 1.5  μm DFB laser using internal second harmonic generation and atomic 87Rb line,” Electron. Lett. 25, 22–23 (1989).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1  THz (1560.5  nm) using 87Rb D2-line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

T. Bandi, C. Affolderbach, C. Stefanucci, F. Merli, A. K. Skrivervik, and G. Mileti, “Compact, high-performance CW double-resonance rubidium Standard with 1.4 × 10−13 τ−1/2 stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1769–1778 (2014).
[Crossref]

J. Appl. Phys. (1)

M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de Clercq, and R. Boudot, “A high-performance Raman-Ramsey Cs vapor cell atomic clock,” J. Appl. Phys. 121, 104903 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Metrologia (1)

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Opt. Commun. (1)

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[Crossref]

Phys. Rev. A (1)

J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, “Noise considerations for locking to the center of a Lorentzian line,” Phys. Rev. A 59, 773–777 (1999).
[Crossref]

Phys. Scripta (1)

M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, and G. Mileti, “Study of laser-pumped double-resonance clock signals using a microfabricated cell,” Phys. Scripta T149, 014013 (2012).
[Crossref]

Phys. Today (1)

J. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33–39 (2007).
[Crossref]

Proc. SPIE (1)

F. Gruet, M. Pellaton, C. Affolderbach, T. Bandi, R. Matthey, and G. Mileti, “Compact and frequency stabilized laser heads for Rubidium atomic clocks,” Proc. SPIE 10564, 105642Y (2017).
[Crossref]

Rev. Sci. Instrum. (2)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

C. Stefanucci, T. Bandi, F. Merli, M. Pellaton, C. Affolderbach, G. Mileti, and A. K. Skrivervik, “Compact microwave cavity for high performance rubidium frequency standards,” Rev. Sci. Instrum. 83, 104706 (2012).
[Crossref]

Other (4)

J. Vanier and C. Tomescu, The Quantum Physics of Atomic Frequency Standards: Recent Developments (CRC Press, 2016), pp. 287–295.

G. Mileti and P. Thomann, “Study of the S/N performance of passive atomic clocks using a laser pumped vapour,” in Proceedings of European Frequency and Time Forum (1995), pp. 271–276.

N. Almat, W. Moreno, M. Pellaton, F. Gruet, C. Affolderbach, and G. Mileti, “Characterization of frequency-doubled 1.5-μm lasers for high-performance Rb clocks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).

S. Peil, S. Crane, T. Swanson, and C. R. Ekstrom, “The USNO rubidium fountain,” in Proceedings of IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 304–306.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of the experimental setup. The LH includes its own dedicated frequency stabilization module, while the 1.5 μm-LD is frequency stabilized using the separate FRU. Blue dashed line: free-space optical path. Blue full line: 780-nm PM optical patch cord. Red full line: 1.56-μm PM optical patch cord. Black dotted line: electrical signal.
Fig. 2.
Fig. 2. Doppler-free absorption spectrum of the reference cell (left axis) and the linear transmission spectrum of the PP cell (right axis) measured using the LH. The two optical pump frequencies, L1 and L2, on the reference cell signal as well as the corresponding FM-to-AM conversion factors through the PP cell are indicated.
Fig. 3.
Fig. 3. DR signals measured for the optical pump frequency L1 in (a) using LH in green squares, using 1.56 μm-LD in red circles, and for L2 in (b) using LH in blue diamonds, using 1.56 μm-LD in orange triangles. The demodulated error signals in (c) for the optical pump frequency L1 and in (d) for L2 using the same color code as in (a) and (b).
Fig. 4.
Fig. 4. Detection noise PSDs measured on the atomic clock setup’s photodetector around the microwave modulation frequency of 70 Hz for the optical pump frequency L1 in (a) using LH in green, using 1.56 μm-LD in red, and for L2 in (b) using LH in blue, using 1.56 μm-LD in orange.
Fig. 5.
Fig. 5. Clock frequency shifts with respect to the unperturbed Rb ground-state hyperfine splitting energy as a function of the incident optical power. For the optical pump frequency L1, green squares: using LH, red circles: using 1.56 μm-LD. For the optical pump frequency L2, blue diamonds: using LH, orange triangles: using 1.56 μm-LD.
Fig. 6.
Fig. 6. Clock frequency instabilities measured for optical pump frequency L1 in (a) using LH in green squares, using 1.56 μm-LD in red circles, and for L2 in (b) using LH in blue diamonds, using 1.56 μm-LD in orange triangles. The short-term estimations are indicated in dashed lines for LH and dotted lines for 1.56 μm-LD, in the same color as the corresponding measurement.

Tables (3)

Tables Icon

Table 1. DR Signal Parameters for the Two Optical Pump Frequencies (L1 and L2) and the Two Lasers (LH and 1.56 μm-LD)

Tables Icon

Table 2. Budget for the Clock’s Signal-to-Noise Limit for the Two Optical Pump Frequencies (L1 and L2) and the Two Lasers (LH and 1.56 μm-LD)

Tables Icon

Table 3. Estimated Total Short-Term Clock Instabilities for the Two Optical Pump Frequencies (L1 and L2) and the Two Lasers (LH and 1.56 μm-LD)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ S / N ( τ ) = N PSD 2 · D e · υ Rb · τ 1 / 2 ,
σ y = σ S / N 2 + σ α _ LS 2 + σ β _ LS 2 + σ LO 2 .

Metrics