Abstract

Ultrashort laser pulses allow for the in-volume processing of glass through non-linear absorption, resulting in permanent material changes and the generation of internal stress. Across the manifold potential applications of this technology, process optimization requires a detailed understanding of the laser–matter interaction. Of particular relevance are the deposition of energy inside the material and the subsequent relaxation processes. In this paper, we investigate the spatio-temporal evolution of free carriers, energy transfer, and the resulting permanent modifications in the volume of glass during and after exposure to femtosecond and picosecond pulses. For this purpose, we employ time-resolved microscopy in order to obtain shadowgraphic and interferometric images that allow relating the transient distributions to the refractive index change profile. Whereas the plasma generation time is given by the pulse duration, the thermal dynamics occur over several microseconds. Among the most notable features is the emergence of a pressure wave due to the sudden increase of temperature and pressure within the interaction volume. We show how the structure of the modifications, including material disruptions as well as local defects, can be directly influenced by a judicious choice of pulse duration, pulse energy, and focus geometry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass

Yoshio Hayasaki, Mitsuhiro Isaka, Akihiro Takita, and Saulius Juodkazis
Opt. Express 19(7) 5725-5734 (2011)

Ultrafast laser-induced refractive index changes in Ge15As15S70 chalcogenide glass

C. D’Amico, C. Caillaud, P. K. Velpula, M. K Bhuyan, M. Somayaji, J.-P. Colombier, J. Troles, L. Calvez, V. Nazabal, A. Boukenter, and R. Stoian
Opt. Mater. Express 6(6) 1914-1928 (2016)

Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao
Opt. Express 15(9) 5674-5686 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
    [Crossref]
  4. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
    [Crossref]
  5. M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
    [Crossref]
  6. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
    [Crossref]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref]
  8. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  9. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]
  10. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
    [Crossref]
  11. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  12. F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
    [Crossref]
  13. L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast Bessel beams,” Opt. Express 25, 9312–9317 (2017).
    [Crossref]
  14. S. A. Hosseini and P. R. Herman, “Method of material processing by laser filamentation,” US patent9,296,066 (29 March 2016).
  15. S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
    [Crossref]
  16. D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
    [Crossref]
  17. S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
    [Crossref]
  18. K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
    [Crossref]
  19. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
    [Crossref]
  20. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    [Crossref]
  21. R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
    [Crossref]
  22. J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  23. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  24. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [Crossref]
  25. Corning, “Corning Gorilla Glass,” https://www.corning.com/gorillaglass/worldwide/en.html
  26. M. Sheik-bahae, A. A. Said, and E. W. V. Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [Crossref]
  27. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
    [Crossref]
  28. G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
    [Crossref]
  29. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
    [Crossref]
  30. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
    [Crossref]
  31. R. Allen and G. David, “The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193–221 (1969).
  32. R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
    [Crossref]
  33. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
    [Crossref]
  34. S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
    [Crossref]
  35. S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).
  36. P. Török, P. Varga, Z. Laczik, and G. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [Crossref]
  37. A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
    [Crossref]
  38. C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
    [Crossref]
  39. D. Boyd, “Sodium aluminosilicate glass article strengthened by a surface compressive stress layer,” U.S. patent3,778,335 (11 December 1973).
  40. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566–613 (1900).
    [Crossref]
  41. P. Drude, “Zur elektronentheorie der metalle; II. Teil. Galvanomagnetische und thermomagnetische effecte,” Ann. Phys. 308, 369–402 (1900).
    [Crossref]
  42. C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
    [Crossref]
  43. M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
    [Crossref]
  44. L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  45. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  46. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
    [Crossref]
  47. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
    [Crossref]
  48. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
    [Crossref]
  49. Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966).
    [Crossref]
  50. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
    [Crossref]
  51. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
    [Crossref]
  52. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: plasma luminescence and shielding,” Appl. Opt. 27, 3669–3674 (1988).
    [Crossref]
  53. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5  ns to 125  fs,” Appl. Opt. 36, 5630–5640 (1997).
    [Crossref]
  54. C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
    [Crossref]
  55. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
    [Crossref]
  56. G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
    [Crossref]
  57. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
    [Crossref]
  58. S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
    [Crossref]
  59. S. Hsu and H. Kwok, “Picosecond carrier recombination dynamics of semiconductor-doped glasses,” Appl. Phys. Lett. 50, 1782–1784 (1987).
    [Crossref]
  60. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
    [Crossref]
  61. S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
    [Crossref]
  62. A. Horn, E. Kreutz, and R. Poprawe, “Ultrafast time-resolved photography of femtosecond laser induced modifications in Bk7 glass and fused silica,” Appl. Phys. A 79, 923–925 (2004).
    [Crossref]
  63. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  64. R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
    [Crossref]
  65. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
    [Crossref]
  66. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
    [Crossref]
  67. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [Crossref]
  68. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21, 3946–3958 (2013).
    [Crossref]
  69. D. Harper, “Laser damage in glasses,” Br. J. Appl. Phys. 16, 751–752 (1965).
    [Crossref]
  70. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
    [Crossref]
  71. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
    [Crossref]
  72. P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
    [Crossref]
  73. M. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.-P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
    [Crossref]
  74. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
    [Crossref]
  75. S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
    [Crossref]
  76. B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
    [Crossref]
  77. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
    [Crossref]
  78. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [Crossref]
  79. D. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724–9728 (2009).
    [Crossref]
  80. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [Crossref]
  81. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
    [Crossref]
  82. P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
    [Crossref]
  83. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  84. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
    [Crossref]
  85. N. H. Abel, “Auflösung einer mechanischen aufgabe,” J. Reine Angew. Math. 1826, 153–157 (1826).
    [Crossref]
  86. G. Pretzler, “A new method for numerical Abel-inversion,” Z. Naturforsch., A Phys. Sci. 46, 639–641 (1991).
  87. H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.
  88. D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
    [Crossref]
  89. L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).
  90. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
    [Crossref]
  91. A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
    [Crossref]
  92. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
    [Crossref]
  93. I. H. Hutchinson, “Principles of plasma diagnostics: second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).
    [Crossref]
  94. M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
    [Crossref]
  95. Y. Hayasaki, S.-I. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7, 10405 (2017).
    [Crossref]
  96. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
    [Crossref]
  97. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
    [Crossref]
  98. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
    [Crossref]
  99. M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).
  100. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref]
  101. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
    [Crossref]
  102. M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
    [Crossref]
  103. F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
    [Crossref]
  104. T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
    [Crossref]
  105. T. Yagi and M. Susa, “Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygon controlled by network structure,” Metall. Mater. Trans. B 34, 549–554 (2003).
    [Crossref]
  106. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
    [Crossref]
  107. R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
    [Crossref]
  108. A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
    [Crossref]
  109. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
    [Crossref]
  110. D. Albagli, M. Dark, L. Perelman, C. Von Rosenberg, I. Itzkan, and M. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
    [Crossref]
  111. D. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353–384 (1988).
    [Crossref]
  112. S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39, 113–118 (1956).
    [Crossref]
  113. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  114. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
    [Crossref]
  115. J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
    [Crossref]
  116. Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
    [Crossref]
  117. J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.
  118. T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
    [Crossref]
  119. T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
    [Crossref]
  120. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express 1, 625–632 (2011).
    [Crossref]
  121. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
    [Crossref]
  122. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [Crossref]
  123. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
    [Crossref]
  124. S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
    [Crossref]
  125. D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
    [Crossref]
  126. H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
    [Crossref]
  127. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
    [Crossref]
  128. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
    [Crossref]
  129. F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
    [Crossref]
  130. J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
    [Crossref]
  131. A. J. Cohen and L. N. Makar, “Models for color centers in smoky quartz,” Phys. Status Solidi A 73, 593–596 (1982).
    [Crossref]
  132. A. Cohen and G. Janezic, “Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity,” Phys. Status Solidi A 77, 619–624 (1983).
    [Crossref]
  133. J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
    [Crossref]
  134. H. Hideo and K. Hiroshi, “Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 91, 395–399 (1994).
    [Crossref]
  135. G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
    [Crossref]
  136. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
    [Crossref]
  137. C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
    [Crossref]
  138. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
    [Crossref]
  139. I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
    [Crossref]
  140. J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express 22, 15473–15483 (2014).
    [Crossref]
  141. V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
    [Crossref]
  142. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).
    [Crossref]
  143. M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
    [Crossref]
  144. E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
    [Crossref]
  145. B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
    [Crossref]
  146. S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
    [Crossref]
  147. J. W. Chan, T. Huser, S. Risbud, and D. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
    [Crossref]
  148. W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
    [Crossref]

2018 (2)

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

2017 (5)

2016 (5)

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref]

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

2015 (5)

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

2014 (8)

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express 22, 15473–15483 (2014).
[Crossref]

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

2013 (4)

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21, 3946–3958 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

2012 (1)

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

2011 (11)

D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express 1, 625–632 (2011).
[Crossref]

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
[Crossref]

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

2010 (4)

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

2009 (2)

D. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724–9728 (2009).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

2008 (4)

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

2007 (6)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
[Crossref]

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

2006 (9)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

2005 (11)

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
[Crossref]

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[Crossref]

S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
[Crossref]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

2004 (5)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

A. Horn, E. Kreutz, and R. Poprawe, “Ultrafast time-resolved photography of femtosecond laser induced modifications in Bk7 glass and fused silica,” Appl. Phys. A 79, 923–925 (2004).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

2003 (9)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
[Crossref]

T. Yagi and M. Susa, “Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygon controlled by network structure,” Metall. Mater. Trans. B 34, 549–554 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
[Crossref]

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
[Crossref]

2002 (4)

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
[Crossref]

I. H. Hutchinson, “Principles of plasma diagnostics: second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).
[Crossref]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

2001 (4)

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
[Crossref]

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

2000 (1)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

1999 (3)

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

1997 (3)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5  ns to 125  fs,” Appl. Opt. 36, 5630–5640 (1997).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

1996 (5)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

1995 (4)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

P. Török, P. Varga, Z. Laczik, and G. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
[Crossref]

1994 (3)

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

H. Hideo and K. Hiroshi, “Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 91, 395–399 (1994).
[Crossref]

D. Albagli, M. Dark, L. Perelman, C. Von Rosenberg, I. Itzkan, and M. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
[Crossref]

1993 (1)

E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
[Crossref]

1991 (2)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[Crossref]

G. Pretzler, “A new method for numerical Abel-inversion,” Z. Naturforsch., A Phys. Sci. 46, 639–641 (1991).

1989 (1)

1988 (3)

1987 (1)

S. Hsu and H. Kwok, “Picosecond carrier recombination dynamics of semiconductor-doped glasses,” Appl. Phys. Lett. 50, 1782–1784 (1987).
[Crossref]

1983 (1)

A. Cohen and G. Janezic, “Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity,” Phys. Status Solidi A 77, 619–624 (1983).
[Crossref]

1982 (1)

A. J. Cohen and L. N. Makar, “Models for color centers in smoky quartz,” Phys. Status Solidi A 73, 593–596 (1982).
[Crossref]

1979 (1)

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
[Crossref]

1975 (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

1969 (1)

R. Allen and G. David, “The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193–221 (1969).

1966 (2)

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966).
[Crossref]

J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
[Crossref]

1965 (2)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

D. Harper, “Laser damage in glasses,” Br. J. Appl. Phys. 16, 751–752 (1965).
[Crossref]

1960 (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

1956 (1)

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39, 113–118 (1956).
[Crossref]

1900 (2)

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

P. Drude, “Zur elektronentheorie der metalle; II. Teil. Galvanomagnetische und thermomagnetische effecte,” Ann. Phys. 308, 369–402 (1900).
[Crossref]

1826 (1)

N. H. Abel, “Auflösung einer mechanischen aufgabe,” J. Reine Angew. Math. 1826, 153–157 (1826).
[Crossref]

Abel, N. H.

N. H. Abel, “Auflösung einer mechanischen aufgabe,” J. Reine Angew. Math. 1826, 153–157 (1826).
[Crossref]

Abolghasemi, L.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Ackermann, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Aeppli, G.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Agnello, S.

G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
[Crossref]

Albagli, D.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

D. Albagli, M. Dark, L. Perelman, C. Von Rosenberg, I. Itzkan, and M. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
[Crossref]

Alesenkov, A.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Alexeev, I.

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

Allen, R.

R. Allen and G. David, “The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193–221 (1969).

Almeida, G. F.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Almeida, J. M.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Anfilogov, V.

V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
[Crossref]

Anghel, E.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Anisimov, S.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Antonnetti, A.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Arai, A.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Arnold, C. B.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Ashkenasi, D.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Atkinson, I.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Audebert, P.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Avanesyan, S.

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

Backus, S.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

Barillot, T.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

Barkauskas, M.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Bauer, L.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Baumert, T.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

Bellouard, Y.

Benattar, R.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
[Crossref]

Benuzzi-Mounaix, A.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Beresna, M.

Bergner, K.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Beuton, R.

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Bhuyan, M.

M. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.-P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

Bhuyan, M. K.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Billet, C.

Bland, S.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

Bonse, J.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

Booker, G.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Borrelli, N. F.

Bourgeade, A.

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Bourquard, F.

Boyd, D.

D. Boyd, “Sodium aluminosilicate glass article strengthened by a surface compressive stress layer,” U.S. patent3,778,335 (11 December 1973).

Brenk, O.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Brouwer, N.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

Bruneel, J.

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Burakov, I. M.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

Buscarino, G.

G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
[Crossref]

Butkus, S.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Bykov, V.

V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Capon, M. R. C.

Centurion, M.

M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
[Crossref]

Champagnon, B.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

Champion, A.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
[Crossref]

Chapman, D.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Chassagne, B.

Chen, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Chimier, B.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Cody, G. D.

B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
[Crossref]

Cohen, A.

A. Cohen and G. Janezic, “Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity,” Phys. Status Solidi A 77, 619–624 (1983).
[Crossref]

Cohen, A. J.

A. J. Cohen and L. N. Makar, “Models for color centers in smoky quartz,” Phys. Status Solidi A 73, 593–596 (1982).
[Crossref]

Colombier, J. P.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

Colombier, J.-P.

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

M. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.-P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

Constantinescu, M.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Corbari, C.

Corkum, P.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

Courvoisier, F.

L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast Bessel beams,” Opt. Express 25, 9312–9317 (2017).
[Crossref]

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Crowell, R. A.

R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
[Crossref]

Cvecek, K.

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

D’Oliveira, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

Daguzan, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Dark, M.

Dark, M. L.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

Dausinger, F.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

David, G.

R. Allen and G. David, “The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193–221 (1969).

Davis, K. M.

De Boni, L.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

De Ligny, D.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Dematteo Caulier, O.

Dematteo-Caulier, O.

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Deschamps, T.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

Dickinson, J.

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

Docchio, F.

Domke, M.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Dos Santos, A.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Dreisow, F.

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Drude, P.

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

P. Drude, “Zur elektronentheorie der metalle; II. Teil. Galvanomagnetische und thermomagnetische effecte,” Ann. Phys. 308, 369–402 (1900).
[Crossref]

Duchateau, G.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Dudley, J.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Durst, M.

Eakins, D.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Eaton, S.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

Eberstein, M.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Egner, A.

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

Eichhorn, C.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Eida, M.

Englert, L.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

Esser, D.

Fan, C. H.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
[Crossref]

Fasoulas, S.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Feld, M.

Feld, M. S.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

Felsl, D.

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

Frenz, M.

Fukuda, N.

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

Fukuda, S.-I.

Y. Hayasaki, S.-I. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7, 10405 (2017).
[Crossref]

Fulge, H.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Furfaro, L.

L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast Bessel beams,” Opt. Express 25, 9312–9317 (2017).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Gagné, M.

Gaižauskas, E.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Gamaly, E. G.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Garnov, S. V.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gavartin, J.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Gecevicius, M.

Geindre, J.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Gelardi, F.

G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
[Crossref]

Gertsvolf, M.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

Giust, R.

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Gong, Q.

Götte, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Gottmann, J.

Grady, D.

D. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353–384 (1988).
[Crossref]

Grehn, M.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Griscom, D. L.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[Crossref]

Grojo, D.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

Grossmann, D.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Guizard, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Haag, L.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Halperin, A.

J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
[Crossref]

Hammer, D. X.

Harper, D.

D. Harper, “Laser damage in glasses,” Br. J. Appl. Phys. 16, 751–752 (1965).
[Crossref]

Hasegawa, S.

Y. Hayasaki, S.-I. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7, 10405 (2017).
[Crossref]

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
[Crossref]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Hayasaki, Y.

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

Headspith, J.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Heberle, J.

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

Heinrich, M.

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Hell, S.

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

Helsby, W.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Hendricks, F.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Herdrich, G.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Herman, P.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
[Crossref]

S. A. Hosseini and P. R. Herman, “Method of material processing by laser filamentation,” US patent9,296,066 (29 March 2016).

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Hideo, H.

H. Hideo and K. Hiroshi, “Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 91, 395–399 (1994).
[Crossref]

Hirano, M.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Hiroshi, K.

H. Hideo and K. Hiroshi, “Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 91, 395–399 (1994).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Hoenninger, C.

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Hoffmann, D.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

Hong, Y.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Hong-Bing, J.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Hönninger, C.

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

A. Horn, E. Kreutz, and R. Poprawe, “Ultrafast time-resolved photography of femtosecond laser induced modifications in Bk7 glass and fused silica,” Appl. Phys. A 79, 923–925 (2004).
[Crossref]

Hosono, H.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

Hosseini, S. A.

S. A. Hosseini and P. R. Herman, “Method of material processing by laser filamentation,” US patent9,296,066 (29 March 2016).

Hsu, S.

S. Hsu and H. Kwok, “Picosecond carrier recombination dynamics of semiconductor-doped glasses,” Appl. Phys. Lett. 50, 1782–1784 (1987).
[Crossref]

Huber, H. P.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Husakou, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Huser, T.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

Hutchinson, I. H.

I. H. Hutchinson, “Principles of plasma diagnostics: second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).
[Crossref]

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Isaka, M.

Ishiguro, Y.

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

Itina, T. E.

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
[Crossref]

Itzkan, I.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

D. Albagli, M. Dark, L. Perelman, C. Von Rosenberg, I. Itzkan, and M. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
[Crossref]

Ivanov, D.

D. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724–9728 (2009).
[Crossref]

Iwata, K.

Jacquot, M.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Janezic, G.

A. Cohen and G. Janezic, “Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity,” Phys. Status Solidi A 77, 619–624 (1983).
[Crossref]

Jansen, E. D.

Javaux Léger, C.

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Jiang, H.

Juodkazis, S.

Y. Hayasaki, S.-I. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7, 10405 (2017).
[Crossref]

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

Kajihara, K.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

Kalupka, C.

Kamitsos, E.

E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
[Crossref]

Kammel, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Kanehira, S.

Kapteyn, H.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

Karimelahi, S.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Kashyap, R.

Kaškelye, D.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Kassir-Bodon, A.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

Kazansky, P. G.

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21, 3946–3958 (2013).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Keil, R.

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Keldysh, L.

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kimmel, A. V.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Kleiner, J.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Kling, R.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Knapp, A.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Konov, V. I.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

Kordas, G.

E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
[Crossref]

Kreutz, E.

A. Horn, E. Kreutz, and R. Poprawe, “Ultrafast time-resolved photography of femtosecond laser induced modifications in Bk7 glass and fused silica,” Appl. Phys. A 79, 923–925 (2004).
[Crossref]

Krol, D.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
[Crossref]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

Krutsch, H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

Kumkar, M.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Kwok, H.

S. Hsu and H. Kwok, “Picosecond carrier recombination dynamics of semiconductor-doped glasses,” Appl. Phys. Lett. 50, 1782–1784 (1987).
[Crossref]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Laczik, Z.

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Langford, S.

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

Lapointe, J.

Lei, S.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

Lentes, F.-T.

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Lescoute, E.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Li, J.

Li, M.-J.

Li, Y.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Lian, R.

R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
[Crossref]

Liu, Y.

Lohle, S.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Longhi, S.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Longtin, J. P.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
[Crossref]

Lonzaga, J.

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

Lopez, J.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Loubeyre, P.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Lucier, A.

B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
[Crossref]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Ma, H.

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

Mackey, J.

J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
[Crossref]

Makar, L. N.

A. J. Cohen and L. N. Makar, “Models for color centers in smoky quartz,” Phys. Status Solidi A 73, 593–596 (1982).
[Crossref]

Malyutin, A. A.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

Mao, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Marburger, J.

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Margueritat, J.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

Martin, P.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Martinet, C.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

Martins, R. J.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Mathon, O.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Matylitsky, V.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Mauclair, C.

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Méchain, G.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

Medvedev, N.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

Mellerio, J.

Mendonca, C. R.

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Mermet, A.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

Mermillod-Blondin, A.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

M. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.-P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Meshcheryakov, Y. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

Meyer, R.

Meynadier, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Mishchik, K.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Miura, K.

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Mottay, E.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

Mourou, G.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

Murnane, M.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

Mysen, B. O.

B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

Nagasawa, K.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Nagata, K.

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
[Crossref]

Nagulin, K. Y.

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

Naumov, A.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Nishi, M.

Nishii, J.

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Noack, J.

Nolte, S.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Noojin, G. D.

Occelli, F.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

Okuno, M.

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

Olteanu, M.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Onda, S.

Ornigotti, M.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

Osipov, A.

V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
[Crossref]

Osmani, O.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

Paipulas, D.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Papazoglou, D. G.

Pascarelli, S.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Patsis, A.

E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
[Crossref]

Perdrix, M.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

Perelman, L.

Perelman, L. T.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Petite, G.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Petrescu, S.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Popovics, C.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
[Crossref]

Poprawe, R.

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

Pretzler, G.

G. Pretzler, “A new method for numerical Abel-inversion,” Z. Naturforsch., A Phys. Sci. 46, 639–641 (1991).

Prod’homme, L.

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Psaltis, D.

M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
[Crossref]

Pu, Y.

M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
[Crossref]

Qi-Huang, G.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Quan, S.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Quere, F.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Quéré, F.

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
[Crossref]

Raizer, Y. P.

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966).
[Crossref]

Rämer, A.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

Ramme, M.

Ramo, D. M.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Rapp, L.

Rapp, S.

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Rayner, D.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[Crossref]

Regondi, P.

Reichman, W.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Reininghaus, M.

Renner, C.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Rethfeld, B.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

D. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724–9728 (2009).
[Crossref]

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Rezaei, S.

Risbud, S.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

Rockwell, B. A.

Rønnow, H. M.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Rosenfeld, A.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Rudenko, A.

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

Russ, S.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Russo, R.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Said, A. A.

Sakakura, M.

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Sakurai, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Sarpe-Tudoran, C.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Schatz, J.

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Schmidt, M.

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Schmücker, M.

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

Schneider, H.

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

Schüler, H.

Seuthe, T.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Shah, L.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Sheik-bahae, M.

Sheng, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Shimotsuma, Y.

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Shkrob, I. A.

R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
[Crossref]

Shluger, A. L.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sigel, R.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
[Crossref]

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).
[Crossref]

Sirutkaitis, V.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Skuja, L.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

Skupin, S.

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Smith, H.

J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
[Crossref]

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Sollier, A.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Somayaji, M.

Sonina, S. V.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

Sonneville, C.

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

Sotrop, J.

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

Spinner, S.

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39, 113–118 (1956).
[Crossref]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Stoian, R.

M. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.-P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Stoneham, A. M.

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

Streltsov, A. M.

Stryland, E. W. V.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Sugimoto, N.

Sun, J.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
[Crossref]

Sun, Q.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Susa, M.

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
[Crossref]

T. Yagi and M. Susa, “Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygon controlled by network structure,” Metall. Mater. Trans. B 34, 549–554 (2003).
[Crossref]

Szameit, A.

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Takita, A.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Teng, H.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Thomas, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Thomas, J. U.

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Thomas, R. J.

Tien, A.-C.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Tochio, T.

Torchio, R.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Török, P.

Tsar’kova, O. G.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

Tsarkova, O. G.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

Tünnermann, A.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

Tzortzakis, S.

van Howe, J.

Varga, P.

Veber, A.

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Veiko, V. P.

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

Velpula, P. K.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

Viburys, Ž.

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

Videau, L.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Vinci, T.

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Vogel, A.

Von Der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
[Crossref]

Von Rosenberg, C.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

D. Albagli, M. Dark, L. Perelman, C. Von Rosenberg, I. Itzkan, and M. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
[Crossref]

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
[Crossref]

Wei, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Welch, A. J.

Wendel, M.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Wernitz, R.

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

Winkler, S. W.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Wollenhaupt, M.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

Wortmann, D.

Wu, Z.

Xu, C.

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).
[Crossref]

Yagi, T.

T. Yagi and M. Susa, “Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygon controlled by network structure,” Metall. Mater. Trans. B 34, 549–554 (2003).
[Crossref]

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
[Crossref]

Yamada, K.

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
[Crossref]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Yatskovskii, I. S.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

Yatskovsky, I. S.

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

Yi, L.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Yong-Heng, Z.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Yoshino, F.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

Zaharescu, M.

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

Zhang, H.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

Zhang, J.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Zhu, G.

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

Zipfel, W.

Zotov, N.

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

Am. Mineral. (1)

B. O. Mysen, A. Lucier, and G. D. Cody, “The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2,” Am. Mineral. 88, 1668–1678 (2003).
[Crossref]

Ann. Phys. (2)

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566–613 (1900).
[Crossref]

P. Drude, “Zur elektronentheorie der metalle; II. Teil. Galvanomagnetische und thermomagnetische effecte,” Ann. Phys. 308, 369–402 (1900).
[Crossref]

Appl. Opt. (3)

Appl. Phys. A (12)

A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, and T. E. Itina, “On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses,” Appl. Phys. A 124, 63 (2018).
[Crossref]

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Non-interferometric transient quantitative phase microscopy for ultrafast engineering,” Appl. Phys. A 93, 165–169 (2008).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyē, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis, “Rapid microfabrication of transparent materials using filamented femtosecond laser pulses,” Appl. Phys. A 114, 81–90 (2014).
[Crossref]

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys. A 92, 749–753 (2008).
[Crossref]

A. Horn, E. Kreutz, and R. Poprawe, “Ultrafast time-resolved photography of femtosecond laser induced modifications in Bk7 glass and fused silica,” Appl. Phys. A 79, 923–925 (2004).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Appl. Phys. B (1)

M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte, “Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl. Phys. B 104, 469–480 (2011).
[Crossref]

Appl. Phys. Lett. (7)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

S. Hsu and H. Kwok, “Picosecond carrier recombination dynamics of semiconductor-doped glasses,” Appl. Phys. Lett. 50, 1782–1784 (1987).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by f2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett. 79, 1757–1759 (2001).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 261102 (2009).
[Crossref]

Appl. Surf. Sci. (1)

D. Ivanov and B. Rethfeld, “The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724–9728 (2009).
[Crossref]

Br. J. Appl. Phys. (1)

D. Harper, “Laser damage in glasses,” Br. J. Appl. Phys. 16, 751–752 (1965).
[Crossref]

Chin. Phys. Lett. (1)

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189–192 (2006).
[Crossref]

Europhys. Lett. (2)

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138–144 (2001).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. Geindre, A. Dos Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MGO, Al2O3 and SiO2,” Europhys. Lett. 29, 401–406 (1995).
[Crossref]

Glass Phys. Chem. (1)

V. Bykov, A. Osipov, and V. Anfilogov, “Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data,” Glass Phys. Chem. 29, 105–107 (2003).
[Crossref]

High Power Laser Sci. Eng. (1)

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

J. Am. Ceram. Soc. (1)

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39, 113–118 (1956).
[Crossref]

J. Appl. Phys. (8)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
[Crossref]

J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94, 4332–4340 (2003).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond laser modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2005).
[Crossref]

M. Centurion, Y. Pu, and D. Psaltis, “Holographic capture of femtosecond pulse propagation,” J. Appl. Phys. 100, 063104 (2006).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

J. Ceram. Soc. Jpn. (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[Crossref]

J. Chem. Phys. (1)

T. Deschamps, C. Martinet, D. de Ligny, J. Bruneel, and B. Champagnon, “Correlation between boson peak and anomalous elastic behavior in GeO2 glass: an in situ Raman scattering study under high-pressure,” J. Chem. Phys. 134, 234503 (2011).
[Crossref]

J. Heat Transfer (1)

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer 124, 275–283 (2001).
[Crossref]

J. Laser Micro/Nanoeng. (2)

M. Domke, D. Felsl, S. Rapp, J. Sotrop, H. P. Huber, and M. Schmidt, “Evidence of pressure waves in confined laser ablation,” J. Laser Micro/Nanoeng. 10, 119–123 (2015).

M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, “Modulation of crack generation inside a LiF single crystal by interference of laser induced stress waves,” J. Laser Micro/Nanoeng. 9, 15–18 (2014).
[Crossref]

J. Mech. Phys. Solids (1)

D. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353–384 (1988).
[Crossref]

J. Microsc. (1)

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

J. Mod. Opt. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004).
[Crossref]

J. Non-Cryst. Solids (6)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

T. Yagi, M. Susa, and K. Nagata, “Determination of refractive index and electronic polarisability of oxygen for lithium-silicate melts using ellipsometry,” J. Non-Cryst. Solids 315, 54–62 (2003).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

S. Petrescu, M. Constantinescu, E. Anghel, I. Atkinson, M. Olteanu, and M. Zaharescu, “Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses,” J. Non-Cryst. Solids 358, 3280–3288 (2012).
[Crossref]

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, “Structure of SiO2–Al2O3 glasses: combined x-ray diffraction, IR and Raman studies,” J. Non-Cryst. Solids 351, 1032–1038 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 1510–1520 (2005).
[Crossref]

J. Phys. Chem. Solids (1)

J. Mackey, H. Smith, and A. Halperin, “Optical studies in x-irradiated high purity sodium silicate glasses,” J. Phys. Chem. Solids 27, 1759–1772 (1966).
[Crossref]

J. Phys. Condens. Matter (2)

T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margueritat, C. Martinet, D. De Ligny, A. Mermet, and B. Champagnon, “Permanent densification of compressed silica glass: a Raman-density calibration curve,” J. Phys. Condens. Matter 25, 025402 (2013).
[Crossref]

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, “Trapping, self-trapping and the polaron family,” J. Phys. Condens. Matter 19, 255208 (2007).
[Crossref]

J. Reine Angew. Math. (1)

N. H. Abel, “Auflösung einer mechanischen aufgabe,” J. Reine Angew. Math. 1826, 153–157 (1826).
[Crossref]

Laser Chem. (1)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Laser Chem. 2010, 1–15 (2011).
[Crossref]

Laser Photon. Rev. (2)

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Laser Phys. (2)

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys. 13, 386–396 (2003).

G. F. Almeida, J. M. Almeida, R. J. Martins, L. De Boni, C. B. Arnold, and C. R. Mendonca, “Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass,” Laser Phys. 28, 015401 (2017).
[Crossref]

Light Sci. Appl. (1)

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Metall. Mater. Trans. B (1)

T. Yagi and M. Susa, “Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygon controlled by network structure,” Metall. Mater. Trans. B 34, 549–554 (2003).
[Crossref]

Micromachines (1)

I. Alexeev, J. Heberle, K. Cvecek, K. Y. Nagulin, and M. Schmidt, “High speed pump-probe apparatus for observation of transitional effects in ultrafast laser micromachining processes,” Micromachines 6, 1914–1922 (2015).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B (3)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. Sect. B 107, 97–101 (1996).
[Crossref]

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, “Electron dynamics and energy dissipation in highly excited dielectrics,” Nucl. Instrum. Methods Phys. Res. Sect. B 327, 78–88 (2014).
[Crossref]

H. Hideo and K. Hiroshi, “Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses,” Nucl. Instrum. Methods Phys. Res. Sect. B 91, 395–399 (1994).
[Crossref]

Opt. Eng. (1)

P. K. Velpula, M. K. Bhuyan, C. Mauclair, J.-P. Colombier, and R. Stoian, “Role of free carriers excited by ultrafast Bessel beams for submicron structuring applications,” Opt. Eng. 53, 076108 (2014).
[Crossref]

Opt. Express (13)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref]

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[Crossref]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
[Crossref]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21, 3946–3958 (2013).
[Crossref]

J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express 22, 15473–15483 (2014).
[Crossref]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref]

L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast Bessel beams,” Opt. Express 25, 9312–9317 (2017).
[Crossref]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
[Crossref]

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (1)

Phys. Chem. Glasses (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. B (10)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).
[Crossref]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

G. Buscarino, S. Agnello, and F. Gelardi, “Characterization of e δ and triplet point defects in oxygen-deficient amorphous silicon dioxide,” Phys. Rev. B 73, 045208 (2006).
[Crossref]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

E. Kamitsos, A. Patsis, and G. Kordas, “Infrared-reflectance spectra of heat-treated sol-gel-derived silica,” Phys. Rev. B 48, 12499–12505 (1993).
[Crossref]

Phys. Rev. E (1)

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Phys. Rev. Lett. (7)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[Crossref]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2,” Phys. Rev. Lett. 72, 2101–2104 (1994).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Phys. Status Solidi A (2)

A. J. Cohen and L. N. Makar, “Models for color centers in smoky quartz,” Phys. Status Solidi A 73, 593–596 (1982).
[Crossref]

A. Cohen and G. Janezic, “Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity,” Phys. Status Solidi A 77, 619–624 (1983).
[Crossref]

Phys. Status Solidi C (1)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2, 15–24 (2005).
[Crossref]

Plasma Phys. Controlled Fusion (1)

I. H. Hutchinson, “Principles of plasma diagnostics: second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. Von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Natl. Acad. Sci. USA 92, 1960–1964 (1995).
[Crossref]

Proc. SPIE (3)

C. Javaux Léger, K. Mishchik, O. Dematteo-Caulier, S. Skupin, B. Chimier, G. Duchateau, A. Bourgeade, C. Hoenninger, E. Mottay, J. Lopez, and R. Kling, “Effects of burst mode on transparent materials processing,” Proc. SPIE 9351, 93510M (2015).
[Crossref]

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Prog. Quantum Electron. (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Quantum Electron. (2)

S. V. Garnov, V. I. Konov, A. A. Malyutin, O. G. Tsar’kova, I. S. Yatskovskii, and F. Dausinger, “Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses,” Quantum Electron. 33, 758–764 (2003).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1586 (1979).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref]

RSC Adv. (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).
[Crossref]

Sci. Rep. (2)

R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).
[Crossref]

Y. Hayasaki, S.-I. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7, 10405 (2017).
[Crossref]

Sov. Phys. JETP (1)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Sov. Phys. Usp. (1)

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966).
[Crossref]

Z. Naturforsch., A Phys. Sci. (1)

G. Pretzler, “A new method for numerical Abel-inversion,” Z. Naturforsch., A Phys. Sci. 46, 639–641 (1991).

Z. Wiss. Mikrosk. Mikrosk. Tech. (1)

R. Allen and G. David, “The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. Mikrosk. Tech. 69, 193–221 (1969).

Other (6)

Corning, “Corning Gorilla Glass,” https://www.corning.com/gorillaglass/worldwide/en.html

D. Boyd, “Sodium aluminosilicate glass article strengthened by a surface compressive stress layer,” U.S. patent3,778,335 (11 December 1973).

S. A. Hosseini and P. R. Herman, “Method of material processing by laser filamentation,” US patent9,296,066 (29 March 2016).

H. Fulge, A. Knapp, R. Wernitz, C. Eichhorn, G. Herdrich, S. Fasoulas, and S. Lohle, “Improved Abel inversion method for analysis of spectral and photo-optical data of magnetic influenced plasma flows,” in 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) (2011), p. 3456.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

J. U. Thomas, J. Schatz, F.-T. Lentes, K. Bergner, S. Nolte, A. Veber, and D. de Ligny, “Transient and permanent properties of ultrashort pulse laser modified glass,” in Glastechnische Tagung (Deutsche Glastechnische Gesellschaft, 2017), Vol. 91.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1.
Fig. 1. Pump–probe setup with delayable, frequency-doubled (513 nm), 200 fs short probe pulse and pump pulse with 200 fs, 1 ps, 6 ps, or 12 ps pulse duration, respectively. A grating pair serves to recompress the temporally prechirped probe pulse. An additional Wollaston prism with polarizer and analyzer enables interferometric measurements.
Fig. 2.
Fig. 2. Simulated intensity distribution obtained by a microscope objective (NA 0.35) and 1026 nm laser pulse in vacuum (a). Spherical aberrations occur, dependent on the defocusing depth [ ( b ) = 1    mm , ( c ) = 2    mm , ( d ) = 5    mm ]. The intensity distribution from (d) is widely spread and additional maxima occur (e). Laser beam is incident from the left.
Fig. 3.
Fig. 3. Spatio-temporal plasma evolution and resulting material modifications with a 6 ps and 200 μJ laser pulse, imaged as false-color shadowgraphic representation for the transmitted probe-beam (transmission scale identical to Fig. 5). The generated plasma in the focal region starts to grow towards the incoming beam, following the beam caustic, on a ps timescale. On a later time scale, long-living decay and lattice temperature-associated states can be observed, which relax within several ns.
Fig. 4.
Fig. 4. Measured transmission evolution at z = 0    μm (in the focus) for different pulse durations of the pump pulse.
Fig. 5.
Fig. 5. Pump–probe images for 6 ps pulse duration, NA 0.35, and different pulse energies. A false-color illustration is used for the transmission of the probe pulse after 14 ps (time of maximum plasma expansion).
Fig. 6.
Fig. 6. Simulated intensity distribution (a) with a sample tilt of 2°. The pump–probe image (b) shows a plasma spot generation detached from the focal area and the microscope image (c) of the corresponding asymmetric modification.
Fig. 7.
Fig. 7. Spatio-temporal plasma evolution with a 200 fs and 200 μJ laser pulse, imaged as false-color presentation for the transmitted probe-beam (transmission color bar identical to Fig. 5). The incoming laser beam breaks down into multiple filaments that propagate independently in the laser direction.
Fig. 8.
Fig. 8. Pump–probe shadowgraphic images of different plasma evolution phases during the laser–matter interaction with a 1 ps, 200 μJ laser pulse (transmission color bar as Fig. 5). The incoming beam breaks down into multiple filaments that generate a less dense plasma.
Fig. 9.
Fig. 9. Pump–probe shadowgraphic image of a single-shot 12 ps, 200 μJ laser pulse after 20 ps (time of maximum plasma expansion) and the resulting modification. The entire interaction area exhibits strong disruptions of the material.
Fig. 10.
Fig. 10. Interference images before (a) laser irradiation and at different time steps (b) and (c) of the plasma evolution inside Gorilla glass with a 6 ps and 200 μJ laser pulse.
Fig. 11.
Fig. 11. Reconstructed phase shift (a), refractive index change (b), and line scan (c) through (b) obtained by a 6 ps and 200 μJ laser pulse inside Gorilla glass after 100 ps.
Fig. 12.
Fig. 12. Calculated refractive index changes for 6 ps pulse duration, NA 0.35, and different pulse energies after 14    ps (time of maximum plasma expansion).
Fig. 13.
Fig. 13. Time-resolved measurements of the refractive index change in the focal region induced by a single 6 ps and 200 μJ laser pulse. (a) Evolution during and shortly after ignition and (b) development on the ns-time scale.
Fig. 14.
Fig. 14. Refractive index changes during the plasma evolution 3    ps after plasma ignition. The color bar was adjusted to visualize the different signs. Also, the scale was adapted for better visualization.
Fig. 15.
Fig. 15. Refractive index change induced by a single 6 ps and 200 μJ laser pulse, 7 ns after ignition (a), remaining modification after 1 s (b), and corresponding line scan from A to B (c). Color bar at (a) is equal to Fig. 12, and (b) was adjusted for better visualization.
Fig. 16.
Fig. 16. (a) Microscopic image of a single-shot volume modification (pulse energy 25 μJ). A disruption in the focal region and dark colored tear-like shape in front of it can be recognized. (b) Microscopic image of single shot volume modification (pulse energy 200 μJ) with longer disruption in the focal region and broader and longer tear-like formation of color centers and refractive index change in front of the focus.
Fig. 17.
Fig. 17. Transmission of pristine Corning Gorilla glass in comparison to samples treated with pulses of 200 fs and 200 μJ and corresponding absorption spectra.
Fig. 18.
Fig. 18. Convolution of the generated color centers within Corning Gorilla glass due to a low dense plasma.
Fig. 19.
Fig. 19. Absorption spectra of irradiated (200 fs, 200 μJ) Corning Gorilla glass after thermal annealing.
Fig. 20.
Fig. 20. Photoluminescence signal of E δ centers excited with 325 nm radiation of the laser-treated (200 fs pulse duration) sample.
Fig. 21.
Fig. 21. Raman spectra of a non-modified and 12 ps single pulse structured Gorilla glass sample.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P cr = 3.77 λ 2 8 π n 0 n 2 ,
Δ ϕ = 2 π Δ n d x λ Probe ,
Δ n = Δ n Kerr + Δ n Plasma + Δ n TO + Δ n Trap .
Δ n Plasma n e 2 n cr ,
Δ n TO = d n d T · Δ T = ( n 2 1 ) ( n 2 + 2 ) 6 n ( α β ) · Δ T .
Δ n = π 1 / 2 n 0 ( d n d T ) Δ T ,
Δ n Δ ρ = ( n 0 1 ) ( δ ρ ρ 0 ) .
p = Y 3 ( 1 2 ω ) ( δ ρ ρ 0 ) ,

Metrics