Abstract

Current methane gas leak detection technology uses infrared imaging in the medium wave (MW) or long wave (LW) bands, essentially applying cooled infrared detectors. In this study, a simplified three-layer radiative transfer model is adopted based on methane gas detection theory, considering background radiation, atmospheric infrared absorption, gas absorption, and emission characteristics to analyze the contrast of methane gas thermography in different infrared bands. The analysis results suggest that under certain conditions, the 6.6–8.6 μm LW band provides higher contrast compared to the 3–5 μm MW band. The optimal imaging wavelength band is selected according to imaging contrast advantages and disadvantages, and infrared optical systems and infrared filters are designed and optimized. We build a passive methane gas leak detection system based on uncooled infrared focal plane array detectors. By collecting gas images under different conditions, the imaging detection capabilities for methane gas leaks in the MW and LW bands in a laboratory environment are compared. Finally, the developing trends in methane gas detection technology are analyzed.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

7 June 2018: A correction was made to the author listing.


OSA Recommended Articles
Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems

Xu Zhang, Weiqi Jin, Jiakun Li, Xia Wang, and Shuo Li
Appl. Opt. 56(10) 2952-2959 (2017)

Real-time imaging of methane gas leaks using a single-pixel camera

Graham M. Gibson, Baoqing Sun, Matthew P. Edgar, David B. Phillips, Nils Hempler, Gareth T. Maker, Graeme P. A. Malcolm, and Miles J. Padgett
Opt. Express 25(4) 2998-3005 (2017)

MRGC performance evaluation model of gas leak infrared imaging detection system

Jiakun Li, Weiqi Jin, Xia Wang, and Xu Zhang
Opt. Express 22(S7) A1701-A1712 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription