Abstract

We present a range-gated camera system designed for real-time (10 Hz) 3D estimation underwater. The system uses a fast-shutter CMOS sensor (1280×1024) customized to facilitate gating with 1.67 ns (18.8 cm in water) delay steps relative to the triggering of a solid-state actively Q-switched 532 nm laser. A depth estimation algorithm has been carefully designed to handle the effects of light scattering in water, i.e., forward and backward scattering. The raw range-gated signal is carefully filtered to reduce noise while preserving the signal even in the presence of unwanted backscatter. The resulting signal is proportional to the number of photons that are reflected during a small time unit (range), and objects will show up as peaks in the filtered signal. We present a peak-finding algorithm that is robust to unwanted forward scatter peaks and at the same time can pick out distant peaks that are barely higher than peaks caused by sensor and intensity noise. Super-resolution is achieved by fitting a parabola around the peak, which we show can provide depth precision below 1 cm at high signal levels. We show depth estimation results when scanning a range of 8 m (typically 1–9 m) at 10 Hz. The results are dependent on the water quality. We are capable of estimating depth at distances of over 4.5 attenuation lengths when imaging high albedo targets at low attenuation lengths, and we achieve a depth resolution (σ) ranging from 0.8 to 9 cm, depending on signal level.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lidar profiles of fish schools

James H. Churnside, James J. Wilson, and Viatcheslav V. Tatarskii
Appl. Opt. 36(24) 6011-6020 (1997)

CauStereo: Range from light in nature

Yohay Swirski, Yoav Y. Schechner, Ben Herzberg, and Shahriar Negahdaripour
Appl. Opt. 50(28) F89-F101 (2011)

Independent component analysis for enhancement of an FMCW optical ranging technique in turbid waters

David W. Illig, William D. Jemison, and Linda J. Mullen
Appl. Opt. 55(31) C25-C33 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Aykin and S. Negahdaripour, “Forward-look 2-D sonar image formation and 3-D reconstruction,” in Oceans (IEEE, 2013), pp. 1–10.
  2. F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
    [Crossref]
  3. Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
    [Crossref]
  4. S. G. Narasimhan and S. K. Nayar, “Structured light methods for underwater imaging: light stripe scanning and photometric stereo,” in Oceans (IEEE, 2005), pp. 2610–2617.
  5. D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.
  6. F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
    [Crossref]
  7. L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.
  8. J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
    [Crossref]
  9. J. F. Andersen, J. Busck, and H. Heiselberg, Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection (Danisch Defense Research Establishment, 2013).
  10. C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
    [Crossref]
  11. B. A. Swartz, “Laser range gate underwater imaging advances,” in Oceans (IEEE, 1994), Vol. 2, p. II–722.
  12. D.-M. He, “Underwater laser-illuminated range-gated imaging scaled by 22.5  cm ns−1 with serial targets,” J. Ocean Univ. China 3, 208–219 (2004).
    [Crossref]
  13. A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
    [Crossref]
  14. A. Andersson, “Range gated viewing with underwater camera,” in Linköpings universitet, Institutionen för systemteknik (2005).
  15. B. Jutzi and U. Stilla, “Laser pulse analysis for reconstruction and classification of urban objects,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 151–156 (2003).
  16. R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
    [Crossref]
  17. G. Kamermann, “Laser radar,” in Active Electro-Optical Systems, The Infrared & Electro-Optical Systems Handbook (SPIE Optical Engineering, 1993).
  18. S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
    [Crossref]
  19. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
    [Crossref]
  20. B. Jutzi and U. Stilla, “Simulation and analysis of full-waveform laser data of urban objects,” in Urban Remote Sensing Joint Event (IEEE, 2007), pp. 1–5.
  21. S. Y. Chua, X. Wang, N. Guo, and C. S. Tan, “Range compensation for accurate 3D imaging system,” Appl. Opt. 55, 153–158 (2016).
    [Crossref]
  22. W. Xinwei, L. Youfu, and Z. Yan, “Triangular-range-intensity profile spatial-correlation method for 3D super-resolution range-gated imaging,” Appl. Opt. 52, 7399–7406 (2013).
    [Crossref]
  23. M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
    [Crossref]
  24. G. Bouquet, J. Thorstensen, K. A. Hestnes Bakke, and P. Risholm, “Design tool for TOF and SL based 3D cameras,” Opt. Express 25, 27758–27769 (2017).
    [Crossref]

2017 (2)

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

G. Bouquet, J. Thorstensen, K. A. Hestnes Bakke, and P. Risholm, “Design tool for TOF and SL based 3D cameras,” Opt. Express 25, 27758–27769 (2017).
[Crossref]

2016 (1)

2013 (1)

2011 (3)

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

2009 (2)

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

2006 (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[Crossref]

2005 (2)

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

2004 (2)

D.-M. He, “Underwater laser-illuminated range-gated imaging scaled by 22.5  cm ns−1 with serial targets,” J. Ocean Univ. China 3, 208–219 (2004).
[Crossref]

J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
[Crossref]

2003 (1)

B. Jutzi and U. Stilla, “Laser pulse analysis for reconstruction and classification of urban objects,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 151–156 (2003).

Andersen, J. F.

J. F. Andersen, J. Busck, and H. Heiselberg, Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection (Danisch Defense Research Establishment, 2013).

Andersson, A.

A. Andersson, “Range gated viewing with underwater camera,” in Linköpings universitet, Institutionen för systemteknik (2005).

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[Crossref]

Andren, C.

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Aykin, M. D.

M. D. Aykin and S. Negahdaripour, “Forward-look 2-D sonar image formation and 3-D reconstruction,” in Oceans (IEEE, 2013), pp. 1–10.

Bacher, E.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Barone, S.

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Bianco, G.

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Bollt, E. M.

L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.

Bouquet, G.

Britton, W.

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Bruno, F.

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Busck, J.

J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
[Crossref]

J. F. Andersen, J. Busck, and H. Heiselberg, Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection (Danisch Defense Research Establishment, 2013).

Caimi, F.

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Christnacher, F.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Chua, S.

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

Chua, S. Y.

Dalgleish, F.

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Embry, C.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.

Eriksson, I.

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

Forand, L.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

Fournier, G. R.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

Guo, N.

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

S. Y. Chua, X. Wang, N. Guo, and C. S. Tan, “Range compensation for accurate 3D imaging system,” Appl. Opt. 55, 153–158 (2016).
[Crossref]

Hardy, M.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.

He, D.

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

He, D.-M.

D.-M. He, “Underwater laser-illuminated range-gated imaging scaled by 22.5  cm ns−1 with serial targets,” J. Ocean Univ. China 3, 208–219 (2004).
[Crossref]

Heiselberg, H.

J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
[Crossref]

J. F. Andersen, J. Busck, and H. Heiselberg, Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection (Danisch Defense Research Establishment, 2013).

Hestnes Bakke, K. A.

Hou, Z.

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Jacobson, J.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.

Jemison, W. D.

L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.

Jutzi, B.

B. Jutzi and U. Stilla, “Laser pulse analysis for reconstruction and classification of urban objects,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 151–156 (2003).

B. Jutzi and U. Stilla, “Simulation and analysis of full-waveform laser data of urban objects,” in Urban Remote Sensing Joint Event (IEEE, 2007), pp. 1–5.

Kamermann, G.

G. Kamermann, “Laser radar,” in Active Electro-Optical Systems, The Infrared & Electro-Optical Systems Handbook (SPIE Optical Engineering, 1993).

Kaplan, A. F. H.

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

Laurenzis, M.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Li, Y.

L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.

Liu, Y.

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Mathieu, P.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

McLeod, D.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.

Metzger, N.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Muzzupappa, M.

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Narasimhan, S. G.

S. G. Narasimhan and S. K. Nayar, “Structured light methods for underwater imaging: light stripe scanning and photometric stereo,” in Oceans (IEEE, 2005), pp. 2610–2617.

Nayar, S. K.

S. G. Narasimhan and S. K. Nayar, “Structured light methods for underwater imaging: light stripe scanning and photometric stereo,” in Oceans (IEEE, 2005), pp. 2610–2617.

Negahdaripour, S.

M. D. Aykin and S. Negahdaripour, “Forward-look 2-D sonar image formation and 3-D reconstruction,” in Oceans (IEEE, 2013), pp. 1–10.

Olsson, R.

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

Powell, J.

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

Razionale, A. V.

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

Risholm, P.

Rumbaugh, L. K.

L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.

Seet, G.

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

Sluzek, A.

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

Stilla, U.

B. Jutzi and U. Stilla, “Laser pulse analysis for reconstruction and classification of urban objects,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 151–156 (2003).

B. Jutzi and U. Stilla, “Simulation and analysis of full-waveform laser data of urban objects,” in Urban Remote Sensing Joint Event (IEEE, 2007), pp. 1–5.

Su, X.

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Swartz, B. A.

B. A. Swartz, “Laser range gate underwater imaging advances,” in Oceans (IEEE, 1994), Vol. 2, p. II–722.

Tan, C.

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

Tan, C. S.

Thorstensen, J.

Wang, Q.

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Wang, X.

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

S. Y. Chua, X. Wang, N. Guo, and C. S. Tan, “Range compensation for accurate 3D imaging system,” Appl. Opt. 55, 153–158 (2016).
[Crossref]

Weidemann, A.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

Xinwei, W.

Yan, Z.

Youfu, L.

Zhang, Q.

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Zielenski, I.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Appl. Opt. (3)

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. (1)

B. Jutzi and U. Stilla, “Laser pulse analysis for reconstruction and classification of urban objects,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 151–156 (2003).

ISPRS J. Photogramm. Remote Sens. (1)

F. Bruno, G. Bianco, M. Muzzupappa, S. Barone, and A. V. Razionale, “Experimentation of structured light and stereo vision for underwater 3D reconstruction,” ISPRS J. Photogramm. Remote Sens. 66, 508–518 (2011).
[Crossref]

J. Ocean Univ. China (1)

D.-M. He, “Underwater laser-illuminated range-gated imaging scaled by 22.5  cm ns−1 with serial targets,” J. Ocean Univ. China 3, 208–219 (2004).
[Crossref]

Opt. Eng. (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Q. Zhang, Q. Wang, Z. Hou, Y. Liu, and X. Su, “Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection,” Opt. Laser Technol. 43, 801–805 (2011).
[Crossref]

Opt. Lasers Eng. (2)

C. Tan, G. Seet, A. Sluzek, and D. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43, 995–1009 (2005).
[Crossref]

R. Olsson, I. Eriksson, J. Powell, and A. F. H. Kaplan, “Advances in pulsed laser weld monitoring by the statistical analysis of reflected light,” Opt. Lasers Eng. 49, 1352–1359 (2011).
[Crossref]

Proc. SPIE (3)

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59 (2005).
[Crossref]

F. Dalgleish, F. Caimi, W. Britton, and C. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298729833 (2009).
[Crossref]

Sensors (1)

S. Chua, N. Guo, C. Tan, and X. Wang, “Improved range estimation model for three-dimensional (3D) range gated reconstruction,” Sensors 17, 2031 (2017).
[Crossref]

Other (9)

M. D. Aykin and S. Negahdaripour, “Forward-look 2-D sonar image formation and 3-D reconstruction,” in Oceans (IEEE, 2013), pp. 1–10.

G. Kamermann, “Laser radar,” in Active Electro-Optical Systems, The Infrared & Electro-Optical Systems Handbook (SPIE Optical Engineering, 1993).

A. Andersson, “Range gated viewing with underwater camera,” in Linköpings universitet, Institutionen för systemteknik (2005).

B. A. Swartz, “Laser range gate underwater imaging advances,” in Oceans (IEEE, 1994), Vol. 2, p. II–722.

L. K. Rumbaugh, E. M. Bollt, W. D. Jemison, and Y. Li, “A 532  nm chaotic lidar transmitter for high resolution underwater ranging and imaging,” in Oceans (IEEE, 2013), pp. 1–6.

J. F. Andersen, J. Busck, and H. Heiselberg, Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection (Danisch Defense Research Establishment, 2013).

S. G. Narasimhan and S. K. Nayar, “Structured light methods for underwater imaging: light stripe scanning and photometric stereo,” in Oceans (IEEE, 2005), pp. 2610–2617.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous inspection using an underwater 3D LiDAR,” in Oceans (IEEE, 2013), pp. 1–8.

B. Jutzi and U. Stilla, “Simulation and analysis of full-waveform laser data of urban objects,” in Urban Remote Sensing Joint Event (IEEE, 2007), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Effect of scattering and attenuation on delay sweeps acquired in water with attenuation length of 2.7 m. Left, histogram-equalized intensity image gated at 2 m from the camera. Right, range-gated sweep in blue from the location of the turquoise square. Markers indicate the gating distances. The (negative) derivative of the range gated sweep is included in dashed red.
Fig. 2.
Fig. 2. Total weight of the 3D imaging system is approximately 9 kg, and the volume is 7 liters. Left, the front of the housing is shown with openings for the (lower) camera and (upper) laser. Right, the internals of the camera consist of a solid-state laser, a CMOS camera, which includes a sequencer and 3D processor, and a 70 m Ethernet connection to a PC that visualizes the acquired depth and intensity data.
Fig. 3.
Fig. 3. Range-gated images acquired in water with attenuation length 1.2 m. Top left, 1    m × 0.3    m multi-albedo targets placed in a 4    m × 8    m × 1    m pool. Top right, image gated at 0.1 m from camera. Bottom left, image is gated at 2.2 m. Bottom right, image is gated at 3.4 m from the camera.
Fig. 4.
Fig. 4. Left, (black) finely resolved signal curve; (red) parabolic fit to three data points. Right, positioning bias with respect to shifts in position of the sample points relative to the signal peak, using weighted average or parabolic peak fit. Parabolic fit provides a robust method, with the use of only three data points.
Fig. 5.
Fig. 5. Dashed lines, theoretical limit to depth precision due to sensor noise, shot noise, and laser intensity noise for varying number of accumulations and binning. Solid lines, individual noise contributions for N a = 4 and N b = 4 .
Fig. 6.
Fig. 6. Flat target with five albedos (left to right: 70%, 30%, 50%, 10%, 90%) acquired at 4 m in water with attenuation length of 1.6 m. Left, an intensity image of the flat target with varying optical reflective properties. Image is gated at 1.9 m. Colorbar shows AD counts. The square indicates the ROI used when calculating the depth precision as reported in Fig. 7. Right, estimated depth map (cm).
Fig. 7.
Fig. 7. Depth estimation results of single flat target. The x axis shows the target placed at seven different distances from 4 to 7 m at 0.5 m intervals. The circle denotes the mean over an 8 × 8 spatial neighborhood, while the length of the bar indicates 2 σ . The various colors represent different attenuation lengths.
Fig. 8.
Fig. 8. Depth precision plotted against signal at different attenuation lengths (crosses). Notice that the results are independent of attenuation lengths. The results are in agreement with the theoretical results, using σ dark = 70 , τ response = 15    ns and σ fixed = 0.7    cm (lower curves); and σ dark = 85 , τ response = 17    ns and σ fixed = 0.9    cm (upper curves).
Fig. 9.
Fig. 9. Top, depth estimation results from dataset with multiple targets at fixed distances. The flat stapled lines show the ground truth distances. Bottom, corresponding plot where the y axis (log scale) shows the peak height (AD counts / Δ z ), which is proportional to the number of photons that are reflected and collected from the object.
Fig. 10.
Fig. 10. Corresponding intensity image (gated at 8 m) and depth map (in meters) from sea trial. The signal of the brightest part of the target was used to compute the SNR. A 3 × 3 region over the target in the depth map was used to compute the depth precision and distance. The target was estimated to be at 9.7 m, and we obtained an SNR of 17 and a depth precision of 2.3 cm.
Fig. 11.
Fig. 11. SNR versus depth precision during field trials. At high signal levels, we approach a depth precision of 1 cm. These measurements correlate with the theoretical precision presented in Fig. 8.
Fig. 12.
Fig. 12. SNR variation with regards to the gating distance. Top, blue curve shows the SNR with respect to gating delay. The orange curve shows the delay sweep curve of the signal (magenta square). Bottom, images from the sweep stack at 0.1 m with an SNR of 5, 2.2 m with an SNR of 9, and 3.4 m with an SNR of 1. The squares in the images illustrate where the pixel values were taken to calculate the SNR.
Fig. 13.
Fig. 13. Corresponding depth map (in cm) and intensity image (gated at 2 m) of a school of fish. All distances that were detected with peak heights lower than 40 were filtered out (represented as dark blue). Notice that the fish cage net is detected at 6 m, which cannot be easily seen in the histogram-equalized intensity image.
Fig. 14.
Fig. 14. Attenuation measurement instrument. The blinking green light source can be seen in the upper left corner, while the camera is located in the lower right corner. They are mounted 0.95 m from each other.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , z ) = z I ( x , z ) d z ,
Z ( x ) = max z i { z 1 , z N } , where    { I ( x , z i 1 ) I ( x , z i ) I ( x , z i + 1 ) I ( x , z i ) > T n .
Z * ( x ) = Z ( x ) + I ( x , Z ( x ) Δ z ) I ( x , Z ( x ) + Δ z ) 2 ( I ( x , Z ( x ) Δ z ) 2 I ( x , Z ( x ) ) + I ( x , Z ( x ) + Δ z ) ) .
I ^ j k = i = j k I ^ ( x , z min + i Δ z ) / ( k j + 1 ) ,
σ TOF = c τ response 2 2 m σ tot S ,
σ tot = S + N a N b 2 σ sensor 2 + ( σ int S / N a    ) 2 ,
σ tot S = 1 N a N b 2 ( 1 S 1 + σ sensor 2 S 1 2 ) + 1 N a σ int 2 .

Metrics