Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism

Not Accessible

Your library or personal account may give you access

Abstract

There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain–workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness agc of brittle–ductile transition and the maximum uncut chip thickness agmax of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between agmax and agc can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Towards predicting removal rate and surface roughness during grinding of optical materials

Tayyab Suratwala, Rusty Steele, Lana Wong, Phil Miller, Eyal Feigenbaum, Nan Shen, Nathan Ray, and Michael Feit
Appl. Opt. 58(10) 2490-2499 (2019)

Ductile mode grinding of reaction-bonded silicon carbide mirrors

Zhichao Dong and Haobo Cheng
Appl. Opt. 56(26) 7404-7412 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.