Abstract

A new class of scalar, rotationally symmetric Gaussian-like beams is introduced. The slowly varying amplitudes of such beams are represented as analytical solutions to the paraxial wave equation, described in terms of the incomplete gamma functions and their products with quadratic exponential and power functions of different kinds. The specific functional forms of these solutions give rise to such names as gamma, gamma-Gaussian, gamma-parabolic, and gamma-anti-Gaussian beams. It is established that, within a focal volume specified by a waist size and the depth of field of about three Rayleigh lengths of the fundamental Gaussian beam of the same waist size, the parametrically optimized zero-order gamma and gamma-coupled beams possess more stabilized transverse sizes, very weak transverse irradiance sidelobes, more uniform axial irradiance distributions, and more steep controllable fall-offs of the last distributions relative to those that are inherent in the above fundamental Gaussian beam and the Bessel–Gauss beams with linear and quadratic radial dependence and the same waist size.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noncoaxial Bessel–Gauss beams

Chaohong Huang, Yishu Zheng, and Hanqing Li
J. Opt. Soc. Am. A 33(4) 508-512 (2016)

Electromagnetic Gaussian beam

S. R. Seshadri
J. Opt. Soc. Am. A 15(10) 2712-2719 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription