Abstract

A multipoint gas sensing scheme based on photoacoustic spectroscopy was proposed. Multiple photoacoustic spectroscopy (PAS) gas cells (resonant frequency f0=5.0kHz) were connected in series for the multipoint gas sensing with wavelength modulation technique. The PAS signal was excited by modulating the tunable distributed feedback laser diode wavelength at f0/2 using a changing driving current. The gas concentration of each gas cell was obtained by the PAS signal, which was demodulated by the lock-in amplifier. A multipoint PAS experiment to detect the water vapor at 1368.597 nm was implemented to verify the scheme we presented. With the three PAS gas cells, the linear response to the water vapor concentration of our sensors achieved 0.9978, 0.99591, and 0.99617, and their minimum detection limits were 479, 662, and 630 ppb, respectively.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-component gas quartz-enhanced photoacoustic spectroscopy sensor based on time-division multiplexing of distributed-feedback laser driver current

Zongliang Wang, Jun Chang, Cunwei Tian, Yiwen Feng, Cheng Wang, Hao Zhang, Qinduan Zhang, Hefu Li, Zhenbao Feng, Xiukun Zhang, and Longfei Tang
Appl. Opt. 58(31) 8479-8485 (2019)

Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser

Yufei Ma, Shunda Qiao, Ying He, Yu Li, Zhonghua Zhang, Xin Yu, and Frank K. Tittel
Opt. Express 27(10) 14163-14172 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription