Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of aerosol optical properties using multiple clustering techniques over Zanjan, Iran, during 2010–2013

Not Accessible

Your library or personal account may give you access

Abstract

Discrimination of aerosol types is very important, because different aerosols are created from diverse sources having different chemical, physical, and optical properties. In the present study, we have analyzed the seasonal classification of aerosol types by multiple clustering techniques, using AERosol Robotic NETwork (AERONET) data during 2010–2013 over Zanjan, Iran. We found that aerosol optical depth (AOD) showed pronounced seasonal variations of a summer high and winter low. Conversely, the values of the Angstrom exponent (AE) in winter and fall were higher than in spring and summer, which confirmed the presence of fine particles, while the low value of AE in the summer and spring represented the existence of coarse particles. Single Scattering Albedo (SSA) variations revealed the presence of scattering aerosols like dust in spring, summer, and fall while the dominance of absorbing-type aerosols in winter were also observed. The influence of local anthropogenic activities has caused a higher concentration of fine aerosols, and a higher fine mode fraction (FMF) of AOD in winter was recorded. Classification of aerosol types was carried out by analyzing different aerosol properties such as AOD versus AE, extinction Angstrom exponent (EAE) versus SSA, EAE versus absorption Angstrom exponent (AAE), FMF AOD versus EAE, and SSA versus FMF AOD. The analysis revealed the presence of dust and polluted dust in spring, summer, and fall in the atmosphere of Zanjan. Urban/industrial aerosols were available in all seasons, especially in fall and winter. The mixed aerosols existed in all seasons over the study location; however, no biomass burning aerosols were found. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol subtype profiles showed the dominance of dust and polluted dust in spring and summer. However, the presence of polluted dust and industrial smoke during fall and winter were also noted over the study site.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Aerosol optical properties and direct radiative forcing at Taihu

Rui Lü, Xingna Yu, Hailing Jia, and Sihan Xiao
Appl. Opt. 56(25) 7002-7012 (2017)

Long-term (2007–2013) analysis of aerosol optical properties over four locations in the Indo-Gangetic plains

Humera Bibi, Khan Alam, Thomas Blaschke, Samina Bibi, and Muhammad Jawed Iqbal
Appl. Opt. 55(23) 6199-6211 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.