Abstract

This paper proposed a novel in-plane displacement field measurement algorithm using an optical flow strategy. We built a linear illumination model between images before and after deformation to guarantee intensity invariability. We used image upsampling and a reliability-guided strategy to find the matching points accurate to 0.5 pixels in the reference and deformed images. The criterion to determine the reliability is zero-mean normalized cross-correlation coefficient. Afterward, we used the brightness constancy constraint combined with Lucas–Kanade optical flow constraint in a specific image region to obtain an overdetermined linear equation. We applied the noniterative least-squares algorithm to solve the equations and to achieve the displacement offsets. This research utilized multithread calculation to handle the complete cracking applications. We estimated the computing efficiency and calculation precision of the proposed method through a series of experimental speckle patterns. All results demonstrated the correctness, effectiveness, and robustness of the proposed method.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of three-dimensional displacement using two-dimensional digital image correlation

Chenggen Quan, Cho Jui Tay, Wei Sun, and Xiaoyuan He
Appl. Opt. 47(4) 583-593 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription