Abstract

The measurement of trace gases has increasingly become a key technique in healthcare and other medical applications. Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a suitable method that can provide the required characteristics in such applications for a comparatively low cost and small size. The quantitative detection and a low detection limit are also required by applications. In this paper, we present new results on sensing biomedically relevant gases using the on-beam QEPAS technique with some newly developed tunable high-power single-mode laser diodes based on GaSb material. The data processing and detection limit determination are done by a field programmable gate array device, as well as an automatic measurement of the resonance frequency.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel

Ying He, Yufei Ma, Yao Tong, Xin Yu, and Frank K. Tittel
Opt. Express 26(8) 9666-9675 (2018)

Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor

Lei Dong, Vincenzo Spagnolo, Rafał Lewicki, and Frank K. Tittel
Opt. Express 19(24) 24037-24045 (2011)

QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL

Yufei Ma, Rafał Lewicki, Manijeh Razeghi, and Frank K. Tittel
Opt. Express 21(1) 1008-1019 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
    [Crossref]
  2. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902–1904 (2002).
    [Crossref]
  3. L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
    [Crossref]
  4. H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).
  5. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
    [Crossref]
  6. A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
    [Crossref]
  7. A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
    [Crossref]
  8. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19, 24037–24045 (2011).
    [Crossref]
  9. R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
    [Crossref]
  10. Y. Ma, R. Lewicki, A. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21, 1008–1019 (2013).
    [Crossref]
  11. A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
    [Crossref]
  12. H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.
  13. M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
    [Crossref]
  14. M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
    [Crossref]
  15. F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
    [Crossref]
  16. T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.
  17. T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
    [Crossref]
  18. H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49, 1378–1387 (2010).
    [Crossref]
  19. C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
    [Crossref]
  20. S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
    [Crossref]

2017 (3)

M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
[Crossref]

S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
[Crossref]

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
[Crossref]

2015 (2)

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

2014 (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

2013 (1)

2012 (1)

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

2011 (3)

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19, 24037–24045 (2011).
[Crossref]

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

2010 (3)

H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49, 1378–1387 (2010).
[Crossref]

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

2005 (1)

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
[Crossref]

2002 (1)

2000 (1)

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

1999 (1)

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Assmann, C.

Baker, L.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902–1904 (2002).
[Crossref]

Buerki, R. R.

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

Cataneo, R. N.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Corsi, C.

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

Curl, R. F.

D’Amato, F.

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

Day, T.

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

De Rosa, M.

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

Deravi, L. F.

S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
[Crossref]

Dinneen, S. R.

S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
[Crossref]

Dong, L.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19, 24037–24045 (2011).
[Crossref]

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

Ferguson, B. A.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

Filippov, N.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

Gleeson, K.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Greenberg, J.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Greenslade, M. E.

S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
[Crossref]

Honsberg, M.

Huang, H.

Hughes, M. B.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Jia, S.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Jimenez, A.

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
[Crossref]

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

Kiseleva, M.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

Koehring, M.

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

Köhring, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

Kosterev, A. A.

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902–1904 (2002).
[Crossref]

Lehmann, K. K.

Lewicki, R.

Liu, X.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Liu, Y.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Ma, W.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Ma, Y.

McVay, P.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

McWhorter, S.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

Milde, T.

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
[Crossref]

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Modugno, G.

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

Mordmueller, M.

M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
[Crossref]

Mordmüller, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

O’Gorman, J.

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
[Crossref]

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Patimisco, P.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

Peters, B.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

Phillips, M.

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Pohlkoetter, A.

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

Razeghi, A.

Reed, M.

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

Risby, T. H.

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

Sacher, J.

Sacher, J. R.

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Sather, J.

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

Scamarcio, G.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

Schade, W.

M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
[Crossref]

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher,” Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56, H45–H50 (2017).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

Schwartz, T. B.

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

Solga, S.

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

Spagnolo, V.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19, 24037–24045 (2011).
[Crossref]

Spiering, F.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

Tatenguem, H.

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

Thomazy, D.

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

Tittel, F. K.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

Y. Ma, R. Lewicki, A. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21, 1008–1019 (2013).
[Crossref]

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19, 24037–24045 (2011).
[Crossref]

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902–1904 (2002).
[Crossref]

van der Veen, A.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

van der Zande, W.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

van Lieshout, B.

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

Willer, U.

M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

Wright, J.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

Wu, H.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Yazdandoust, F.

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

Yin, W.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Zeng, H.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Zhang, L.

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

APL Mater. (1)

S. R. Dinneen, M. E. Greenslade, and L. F. Deravi, “Optical extinction of size-controlled aerosols generated from squid chromatophore pigments,” APL Mater. 5, 104802 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (6)

C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1+3ν21−ν21+ν3 band of CO2 around 2  μm,” Appl. Phys. B 70, 879–881 (2000).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80, 133–138 (2005).
[Crossref]

A. A. Kosterev, R. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Appl. Phys. B 100, 173–180 (2010).
[Crossref]

M. Mordmueller, W. Schade, and U. Willer, “QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases,” Appl. Phys. B 123, 224 (2017).
[Crossref]

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107, 459–467 (2012).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119, 111–118 (2015).
[Crossref]

Lancet (1)

M. Phillips, K. Gleeson, M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and P. McVay, “Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,” Lancet 353, 1930–1933 (1999).
[Crossref]

Laser Phys. (1)

H. Zeng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin, and S. Jia, “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection,” Laser Phys. 25, 125601 (2015).

Mol. Phys. (1)

F. Spiering, M. Kiseleva, N. Filippov, B. van Lieshout, A. van der Veen, and W. van der Zande, “The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy,” Mol. Phys. 109, 535–542 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

R. Lewicki, A. A. Kosterev, D. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE 7945, 79450K (2011).
[Crossref]

Sensors (2)

A. Pohlkoetter, M. Koehring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors 10, 8466–8477 (2010).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref]

Other (2)

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

H. Tatenguem, T. Milde, F. Yazdandoust, A. Jimenez, and J. Sather, “FPGA design of an effective and compact algorithm for real-time monitoring of peak absorbance area of gases: the methane (CH4) case study,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper LTh1G.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. FPGA setup for automatic detection of the QTF resonance frequency. The laser is turned off while the RF is measured.
Fig. 2.
Fig. 2. Measurement of the RF of the QTF for different pressures of CH 4 . An increase of the amplitude of the QEPAS signal is observed with decreasing pressure. The quality of the fork increases while the RF shifts to higher frequencies. In the inset the translation of the resonance curves into their areas is shown.
Fig. 3.
Fig. 3. P versus I curve for the λ 760    nm GaAs digital DFB laser diode. The wavelength tuning behavior with bias current can be seen in the upper inset for different temperatures. In the lower inset, the measured optical spectrum is shown, with an SMSR value of 47.4 dB.
Fig. 4.
Fig. 4. QEPAS signal as a variation of the O 2 pressure inside the cell displayed against the laser bias current I bias for a number of gas pressures.
Fig. 5.
Fig. 5. QEPAS signal displayed as a function of the pressure. The zenith of the QEPAS signal has been extrapolated at 344.35 mbar (258.3 Torr; 34.4 kPa).
Fig. 6.
Fig. 6. P versus I curve for the 1.65 μm centered InP digital DFB laser diode. The wavelength tuning behavior with bias current can be seen in the upper inset for different temperatures. In the lower inset, the measured optical spectrum is shown, with an SMSR value of 48.4 dB.
Fig. 7.
Fig. 7. QEPAS signal as a variation of the CH 4 pressure displayed against the laser bias current I bias . Displayed is only a selection.
Fig. 8.
Fig. 8. QEPAS signal area displayed as a function of the pressure. The zenith of the QEPAS signal is at 397.7 mbar (298.3 Torr; 39.77 kPa).
Fig. 9.
Fig. 9. P versus I curve for the λ 2    μm GaSb digital DFB laser diode. The wavelength tuning behavior with bias current can be seen in the upper inset for different temperatures. In the lower inset, the measured optical spectrum is shown, with an SMSR value of 35.59 dB.
Fig. 10.
Fig. 10. QEPAS signal for a scan of CO 2 over a large laser bias current I bias range. CO 2 R branch is displayed, in particular R8 to R12.
Fig. 11.
Fig. 11. QEPAS signal as a variation of the CO 2 pressure inside the cell displayed against the laser bias current I bias for a number of gas pressures.
Fig. 12.
Fig. 12. QEPAS signal area displayed as a function of the pressure. The zenith of the QEPAS signal has been extrapolated at 366.7 mbar (275.05 Torr; 36.67 kPa).
Fig. 13.
Fig. 13. QEPAS signal area is displayed as a function of the pressure. Here, mixtures of CH 4 and CO 2 in proportions of 50 50 (red) and 75 25 (blue) have been analyzed with the 1650 nm laser.
Fig. 14.
Fig. 14. QEPAS signal area is displayed as a function of the pressure. Here, mixtures of CH 4 and CO 2 in proportions of 50 50 (red) and 75 25 (blue) have been analyzed with the 2004 nm laser.
Fig. 15.
Fig. 15. QEPAS signal area is displayed as a function of the pressure. Here, mixtures of O 2 and CO 2 in proportions of 50 50 (red) and 75 25 (blue) have been analyzed with the 760 nm laser.
Fig. 16.
Fig. 16. QEPAS signal area is displayed as a function of the pressure. Here, mixtures of O 2 and CO 2 in proportions of 50 50 (red) and 75 25 (blue) have been analyzed with the 2004 nm laser.
Fig. 17.
Fig. 17. Study of a miniaturized QEPAS setup fits into a standard butterfly package (total length 30 mm).

Tables (1)

Tables Icon

Table 1. Gases Used in QEPAS Investigation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y n ¯ = 1 M · j = 0 M 1 Y n + j ,
A = 1 τ Y ( t ) d t = T s · n = 1 N Y n ¯ , where    T s = Δ t .

Metrics