Abstract

Use of acousto-optic (A-O) chaos via the feedback loop in a Bragg cell for signal encryption began as a conceptual demonstration around 2008. Radio frequency (RF) chaos from a hybrid A-O feedback device may be used for secure communications of analog and digital signals. In this paper, modulation of RF chaos via first-order feedback is discussed with results corroborated by nonlinear dynamics, bifurcation maps, and Lyapunov analyses. Applications based on encryption with profiled optical beams, and extended to medical and embedded steganographic data, and video signals are discussed. It is shown that the resulting encryption is significantly robust with key tolerances potentially less than 0.1%. Results are also presented for the use of chaotic encryption for image restoration during propagation through atmospheric turbulence.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Security Enhancement in Free-Space Optics Using Acousto-Optic Deflectors

Mina Eghbal and Jamshid Abouei
J. Opt. Commun. Netw. 6(8) 684-694 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription