Abstract

We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar+polarimeter retrieval using both HSRL and RSP measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar

Jennifer A. Schulien, Michael J. Behrenfeld, Johnathan W. Hair, Chris A. Hostetler, and Michael S. Twardowski
Opt. Express 25(12) 13577-13587 (2017)

Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard Chemyakin, Detlef Müller, Sharon Burton, Alexei Kolgotin, Chris Hostetler, and Richard Ferrare
Appl. Opt. 53(31) 7252-7266 (2014)

Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar

Yupeng Zhang, Dong Liu, Zhuofan Zheng, Zhengkuan Liu, DeYun Hu, Bing Qi, Chong Liu, Lei Bi, Kejun Zhang, Chunao Wen, Lingying Jiang, Yuling Liu, Ju Ke, and Zhongming Zang
Appl. Opt. 57(10) 2627-2637 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
    [Crossref]
  2. J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
    [Crossref]
  3. L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
    [Crossref]
  4. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
    [Crossref]
  5. K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
    [Crossref]
  6. J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006).
    [Crossref]
  7. J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
    [Crossref]
  8. L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
    [Crossref]
  9. O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
    [Crossref]
  10. O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).
  11. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. Atmos. 102, 17081–17106 (1997).
    [Crossref]
  12. C. Hostetler, J. Hair, R. Ferrare, S. Burton, and S. Stamnes, “NASA Langley Airborne HSRL microphysics website,” 2017, https://science.larc.nasa.gov/hsrl/ .
  13. B. Cairns, “NASA GISS RSP website,” 2017, https://data.giss.nasa.gov/pub/rsp .
  14. L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
    [Crossref]
  15. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN,” Technical report, (1987).
  16. J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
    [Crossref]
  17. B. Schmid, J. J. Michalsky, D. W. Slater, J. C. Barnard, R. N. Halthore, J. C. Liljegren, B. N. Holben, T. F. Eck, J. M. Livingston, and P. B. Russell, “Comparison of columnar water-vapor measurements from solar transmittance methods,” Appl. Opt. 40, 1886–1896 (2001).
    [Crossref]
  18. B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
    [Crossref]
  19. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [Crossref]
  20. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
    [Crossref]
  21. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [Crossref]
  22. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
    [Crossref]
  23. M. Mishchenko, “Lorenz-Mie code,” 2010, http://www.giss.nasa.gov/staff/mmishchenko/ .
  24. J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 2006).
  25. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
    [Crossref]
  26. R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
    [Crossref]
  27. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [Crossref]
  28. H. C. Van de Hulst, A New Look at Multiple Scattering (NASA Institute for Space Studies, Goddard Space Flight Center, 1963).
  29. J. Hansen and J. Hovenier, “The doubling method applied to multiple scattering of polarized light,” J. Quant. Spectrosc. Radiat. Transfer 11, 809–812 (1971).
    [Crossref]
  30. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres part ii. sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
    [Crossref]
  31. J. Hovenier, “Multiple scattering of polarized light in planetary atmospheres,” Astron. Astrophys. 13, 7–29 (1971).
  32. J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  33. B. Cairns, M. L. Alexandrov, and B. Carlson, “Inversion of multi-angle radiation measurement,” Technical report (Columbia University; NASA Goddard Institute for Space Studies, 2005).
  34. C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).
  35. W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
    [Crossref]
  36. M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
    [Crossref]
  37. N. Chen, W. Li, T. Tanikawa, M. Hori, R. Shimada, T. Aoki, and K. Stamnes, “Fast yet accurate computation of radiances in shortwave infrared satellite remote sensing channels,” Opt. Express 25, A649–A664 (2017).
    [Crossref]
  38. O. Hasekamp, “Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties,” Atmos. Meas. Tech. 3, 1229–1262 (2010).
    [Crossref]
  39. M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
    [Crossref]
  40. D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
    [Crossref]
  41. S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
    [Crossref]
  42. J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.
  43. J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25, 13577–13587 (2017).
    [Crossref]
  44. M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
    [Crossref]
  45. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009).
    [Crossref]
  46. M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
    [Crossref]
  47. M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
    [Crossref]
  48. M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
    [Crossref]
  49. T. Várnai and A. Marshak, “Analysis of co-located MODIS and CALIPSO observations near clouds,” Atmos. Meas. Tech. 5, 389–396 (2012).
    [Crossref]
  50. F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
    [Crossref]
  51. P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
    [Crossref]
  52. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800  nm),” Appl. Opt. 20, 177–184 (1981).
    [Crossref]
  53. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters—a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
    [Crossref]
  54. Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
    [Crossref]
  55. K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2017).
  56. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [Crossref]
  57. A. Morel and J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (2002), Vol. 2, pp. 183–210.

2017 (4)

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25, 13577–13587 (2017).
[Crossref]

N. Chen, W. Li, T. Tanikawa, M. Hori, R. Shimada, T. Aoki, and K. Stamnes, “Fast yet accurate computation of radiances in shortwave infrared satellite remote sensing channels,” Opt. Express 25, A649–A664 (2017).
[Crossref]

2016 (3)

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

2015 (3)

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

2014 (2)

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

2013 (1)

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

2012 (4)

T. Várnai and A. Marshak, “Analysis of co-located MODIS and CALIPSO observations near clouds,” Atmos. Meas. Tech. 5, 389–396 (2012).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
[Crossref]

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

2011 (3)

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).

2010 (2)

2009 (2)

X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

2008 (1)

2007 (2)

M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
[Crossref]

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

2006 (1)

2004 (2)

H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
[Crossref]

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

2003 (1)

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

2001 (2)

1999 (1)

B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

1997 (3)

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. Atmos. 102, 17081–17106 (1997).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[Crossref]

1995 (1)

J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
[Crossref]

1987 (1)

J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

1981 (1)

1980 (1)

1974 (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[Crossref]

1971 (3)

J. Hansen and J. Hovenier, “The doubling method applied to multiple scattering of polarized light,” J. Quant. Spectrosc. Radiat. Transfer 11, 809–812 (1971).
[Crossref]

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres part ii. sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

J. Hovenier, “Multiple scattering of polarized light in planetary atmospheres,” Astron. Astrophys. 13, 7–29 (1971).

1954 (1)

Ackerman, A. S.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

Ahlm, L.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Ahmad, Z.

Alexandrov, M. D.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
[Crossref]

Alexandrov, M. L.

B. Cairns, M. L. Alexandrov, and B. Carlson, “Inversion of multi-angle radiation measurement,” Technical report (Columbia University; NASA Goddard Institute for Space Studies, 2005).

Aoki, T.

Arnold, G. T.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Baker, K. S.

Barnard, J. C.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

B. Schmid, J. J. Michalsky, D. W. Slater, J. C. Barnard, R. N. Halthore, J. C. Liljegren, B. N. Holben, T. F. Eck, J. M. Livingston, and P. B. Russell, “Comparison of columnar water-vapor measurements from solar transmittance methods,” Appl. Opt. 40, 1886–1896 (2001).
[Crossref]

Behrenfeld, M.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Behrenfeld, M. J.

J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25, 13577–13587 (2017).
[Crossref]

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

Berg, L. K.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Berk, A.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN,” Technical report, (1987).

Berkoff, T.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Bernstein, L. S.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN,” Technical report, (1987).

Bertram, A.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Beyersdorf, A. J.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Bosma, P.

J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Burg, R.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

Burton, S.

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

Burton, S. P.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Butler, C.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Butz, A.

O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).

Cairns, B.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
[Crossref]

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006).
[Crossref]

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

B. Cairns, M. L. Alexandrov, and B. Carlson, “Inversion of multi-angle radiation measurement,” Technical report (Columbia University; NASA Goddard Institute for Space Studies, 2005).

Carlson, B.

B. Cairns, M. L. Alexandrov, and B. Carlson, “Inversion of multi-angle radiation measurement,” Technical report (Columbia University; NASA Goddard Institute for Space Studies, 2005).

Carlson, B. E.

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

Chand, D.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Chemyakin, E.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Chen, N.

Chowdhary, J.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006).
[Crossref]

Collins, J.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Comstock, J. M.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Cook, A.

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Corrigan, C.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Cox, C.

Dall’Olmo, G.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

De Haan, J.

J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Deuzé, J.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Diedenhoven, B.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

Du, H.

Dubovik, O.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Ducos, F.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Dunagan, S.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Eck, T. F.

Emde, C.

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

Fast, J. D.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Ferrare, R.

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

Ferrare, R. A.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Flynn, C. J.

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

Franz, B. A.

Frossard, A.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Fry, E. S.

Gordon, H. R.

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. Atmos. 102, 17081–17106 (1997).
[Crossref]

Hair, J.

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Hair, J. W.

J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25, 13577–13587 (2017).
[Crossref]

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

Halthore, R. N.

Hansen, J.

J. Hansen and J. Hovenier, “The doubling method applied to multiple scattering of polarized light,” J. Quant. Spectrosc. Radiat. Transfer 11, 809–812 (1971).
[Crossref]

Hansen, J. E.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[Crossref]

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres part ii. sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

Hare, R.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Harper, D.

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Harrison, L.

J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
[Crossref]

Hasekamp, O.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

O. Hasekamp, “Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties,” Atmos. Meas. Tech. 3, 1229–1262 (2010).
[Crossref]

Hasekamp, O. P.

O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).

Hawkins, L.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

He, M.-X.

Herman, M.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Hlavka, D. L.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Holben, B. N.

Holdak, A.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Hori, M.

Hostetler, C.

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Hostetler, C. A.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25, 13577–13587 (2017).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

Hovenier, J.

J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

J. Hovenier, “Multiple scattering of polarized light in planetary atmospheres,” Astron. Astrophys. 13, 7–29 (1971).

J. Hansen and J. Hovenier, “The doubling method applied to multiple scattering of polarized light,” J. Quant. Spectrosc. Radiat. Transfer 11, 809–812 (1971).
[Crossref]

Hovis, F.

Hu, L.

Hu, Y.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

Huot, Y.

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

Izquierdo, L.

Kahn, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

Kaufman, Y. J.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

Kizer, S. H.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Knobelspiesse, K.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

Kolgotin, A.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Kwiatkowska, E. J.

L’Ecuyer, T. S.

M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
[Crossref]

Lacis, A. A.

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

Lapyonok, T.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Larar, A. M.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Lebsock, M. D.

M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
[Crossref]

Li, W.

Liljegren, J.

J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
[Crossref]

Liljegren, J. C.

Litvinov, P.

O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).

Liu, Q.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Liu, X.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Livingston, J. M.

Lopatin, A.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Mack, T.

Maritorena, S.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters—a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[Crossref]

Marshak, A.

T. Várnai and A. Marshak, “Analysis of co-located MODIS and CALIPSO observations near clouds,” Atmos. Meas. Tech. 5, 389–396 (2012).
[Crossref]

Martins, J. V.

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

McClain, C. R.

McGill, M. J.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Michalsky, J.

J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
[Crossref]

Michalsky, J. J.

Mishchenko, M.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

Mishchenko, M. I.

M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
[Crossref]

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

Modini, R.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Moore, R. H.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Morel, A.

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters—a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[Crossref]

A. Morel and J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (2002), Vol. 2, pp. 183–210.

Mueller, J. L.

A. Morel and J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (2002), Vol. 2, pp. 183–210.

Müller, D.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Munk, W.

Obland, M.

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

Oinas, V.

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

Ottaviani, M.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

Pandis, S.

J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 2006).

Platnick, S. E.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Pope, R. M.

Redemann, J.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

Reynolds, R.

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

Roberts, G.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Robertson, D. C.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN,” Technical report, (1987).

Röckmann, T.

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

Rodgers, C.

C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).

Rodier, S. D.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

Rogers, R.

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

Russell, E. E.

B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Russell, L.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Russell, P. B.

Sawamura, P.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Schmid, B.

Schroder, J.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Schulien, J. A.

Seinfeld, J.

J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 2006).

Shettle, E. P.

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
[Crossref]

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

Shimada, R.

Shinozuka, Y.

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

Sinyuk, A.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Slater, D. W.

Smith, R. C.

Stamnes, J. J.

K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2017).

Stamnes, K.

Stap, F.

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

Stephens, G. L.

M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
[Crossref]

Stramski, D.

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

Tanikawa, T.

Tanré, D.

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

Thomas, G. E.

K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2017).

Travis, L.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

Travis, L. D.

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006).
[Crossref]

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[Crossref]

Trepte, C. R.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

Twardowski, M.

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

Twardowski, M. S.

Van de Hulst, H. C.

H. C. Van de Hulst, A New Look at Multiple Scattering (NASA Institute for Space Studies, Goddard Space Flight Center, 1963).

Van Diedenhoven, B.

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

Várnai, T.

T. Várnai and A. Marshak, “Analysis of co-located MODIS and CALIPSO observations near clouds,” Atmos. Meas. Tech. 5, 389–396 (2012).
[Crossref]

Vaughan, M.

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

Waquet, F.

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

Wasilewski, A. P.

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Welch, W.

Werdell, J.

West, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

Wiscombe, W. J.

Wu, L.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

Wu, W.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Yang, Q.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Ying, R.

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

Yorks, J. E.

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

Zhang, X.

Zhao, R.

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

Zhou, D. K.

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

Ziemba, L. D.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Appl. Opt. (8)

W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
[Crossref]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800  nm),” Appl. Opt. 20, 177–184 (1981).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[Crossref]

B. Schmid, J. J. Michalsky, D. W. Slater, J. C. Barnard, R. N. Halthore, J. C. Liljegren, B. N. Holben, T. F. Eck, J. M. Livingston, and P. B. Russell, “Comparison of columnar water-vapor measurements from solar transmittance methods,” Appl. Opt. 40, 1886–1896 (2001).
[Crossref]

H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
[Crossref]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006).
[Crossref]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref]

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
[Crossref]

Astron. Astrophys. (2)

J. Hovenier, “Multiple scattering of polarized light in planetary atmospheres,” Astron. Astrophys. 13, 7–29 (1971).

J. De Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).

Atmos. Chem. Phys. (2)

K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, and Y. Shinozuka, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys. 11, 7045–7067 (2011).
[Crossref]

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, and A. J. Beyersdorf, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during discover-aq 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Atmos. Meas. Tech. (6)

T. Várnai and A. Marshak, “Analysis of co-located MODIS and CALIPSO observations near clouds,” Atmos. Meas. Tech. 5, 389–396 (2012).
[Crossref]

L. Wu, O. Hasekamp, B. Van Diedenhoven, and B. Cairns, “Aerosol retrieval from multiangle multispectral photopolarimetric measurements: importance of spectral range and angular resolution,” Atmos. Meas. Tech. 8, 2625–2638 (2015).
[Crossref]

O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech. 4, 975–1018 (2011).
[Crossref]

O. Hasekamp, “Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties,” Atmos. Meas. Tech. 3, 1229–1262 (2010).
[Crossref]

D. Müller, C. A. Hostetler, R. Ferrare, S. Burton, E. Chemyakin, A. Kolgotin, J. Hair, A. Cook, D. Harper, and R. Rogers, “Airborne multiwavelength high spectral resolution lidar (hsrl-2) observations during tcap 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the us,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. Burton, M. Vaughan, R. Ferrare, and C. Hostetler, “Separating mixtures of aerosol types in airborne high spectral resolution lidar data,” Atmos. Meas. Tech. 7, 419–436 (2014).
[Crossref]

Biogeosciences (1)

Y. Huot, A. Morel, M. Twardowski, D. Stramski, and R. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern south Pacific Ocean,” Biogeosciences 4, 4571–4604 (2007).
[Crossref]

Geophys. Res. Lett. (2)

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space-based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40, 4355–4360 (2013).
[Crossref]

L. Wu, O. Hasekamp, B. Diedenhoven, B. Cairns, J. E. Yorks, and J. Chowdhary, “Passive remote sensing of aerosol layer height using near-uv multiangle polarization measurements,” Geophys. Res. Lett. 43, 8783–8790 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

B. Cairns, B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas, “Atmospheric correction and its application to an analysis of hyperion data,” IEEE Trans. Geosci. Remote Sens. 41, 1232–1244 (2003).
[Crossref]

W. Wu, X. Liu, D. K. Zhou, A. M. Larar, Q. Yang, S. H. Kizer, and Q. Liu, “The application of PCRTM physical retrieval methodology for IASI cloudy scene analysis,” IEEE Trans. Geosci. Remote Sens. 55, 5042–5056 (2017).
[Crossref]

J. Atmos. Sci. (1)

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres part ii. sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

J. Geophys Res. Atmos. (1)

F. Stap, O. Hasekamp, C. Emde, and T. Röckmann, “Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: synthetic study based on a large eddy simulation,” J. Geophys Res. Atmos. 121, 12914–12935 (2016).
[Crossref]

J. Geophys. Res (1)

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res 114, D01206 (2009).
[Crossref]

J. Geophys. Res. (2)

J. Michalsky, J. Liljegren, and L. Harrison, “A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurement site,” J. Geophys. Res. 100, 25995–26003 (1995).
[Crossref]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters—a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[Crossref]

J. Geophys. Res. Atmos. (6)

R. Modini, A. Frossard, L. Ahlm, L. Russell, C. Corrigan, G. Roberts, L. Hawkins, J. Schroder, A. Bertram, and R. Zhao, “Primary marine aerosol-cloud interactions off the coast of California,” J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
[Crossref]

L. K. Berg, J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. M. Comstock, S. Dunagan, R. A. Ferrare, and C. J. Flynn, “The two-column aerosol project: phase i-overview and impact of elevated aerosol layers on aerosol optical depth,” J. Geophys. Res. Atmos. 121, 336–350 (2016).
[Crossref]

O. P. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res. Atmos. 116, D14204 (2011).

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. Atmos. 102, 17081–17106 (1997).
[Crossref]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. Atmos. 102, 16831–16847 (1997).
[Crossref]

M. D. Lebsock, T. S. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. Atmos. 112, D14206 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

M. D. Alexandrov, B. Cairns, and M. I. Mishchenko, “Rainbow fourier transform,” J. Quant. Spectrosc. Radiat. Transfer 113, 2521–2535 (2012).
[Crossref]

J. Hansen and J. Hovenier, “The doubling method applied to multiple scattering of polarized light,” J. Quant. Spectrosc. Radiat. Transfer 11, 809–812 (1971).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quantum Spectrosc. Radiat. Transfer 88, 149–161 (2004).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

B. Cairns, E. E. Russell, and L. D. Travis, “Research scanning polarimeter: calibration and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Remote Sens. Environ. (3)

M. D. Alexandrov, B. Cairns, A. P. Wasilewski, A. S. Ackerman, M. J. McGill, J. E. Yorks, D. L. Hlavka, S. E. Platnick, G. T. Arnold, and B. Van Diedenhoven, “Liquid water cloud properties during the polarimeter definition experiment (podex),” Remote Sens. Environ. 169, 20–36 (2015).
[Crossref]

M. D. Alexandrov, B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, “Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter,” Remote Sens. Environ. 125, 92–111 (2012).
[Crossref]

J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ. 118, 284–308 (2012).
[Crossref]

Space Sci. Rev. (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[Crossref]

Other (11)

H. C. Van de Hulst, A New Look at Multiple Scattering (NASA Institute for Space Studies, Goddard Space Flight Center, 1963).

C. Hostetler, J. Hair, R. Ferrare, S. Burton, and S. Stamnes, “NASA Langley Airborne HSRL microphysics website,” 2017, https://science.larc.nasa.gov/hsrl/ .

B. Cairns, “NASA GISS RSP website,” 2017, https://data.giss.nasa.gov/pub/rsp .

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN,” Technical report, (1987).

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 22001.

M. Mishchenko, “Lorenz-Mie code,” 2010, http://www.giss.nasa.gov/staff/mmishchenko/ .

J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 2006).

B. Cairns, M. L. Alexandrov, and B. Carlson, “Inversion of multi-angle radiation measurement,” Technical report (Columbia University; NASA Goddard Institute for Space Studies, 2005).

C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).

K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2017).

A. Morel and J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (2002), Vol. 2, pp. 183–210.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Simulated retrievals using 10-parameter state space. The two lines surrounding the 1-to-1 line represent ± 3 σ , or three standard deviations. The red line represents the least-squares bisector. The units are micrometers (μm) for effective radius, meters per second (m/s) for wind speed, and milligrams per meter cubed ( mg / m 3 ) for chlorophyll concentration: the optical depth, effective variance, real refractive index, and single-scattering albedo are unitless. The ranges for the retrieval parameters used in this simulated study are slightly different than the finalized ranges defined by Eq. (2) for real data, but illustrate that the algorithm can successfully retrieve the 8 aerosol and wind speed parameters in 87% of the cases, and chlorophyll concentration in 67% of the cases, using simulated data where all 10 parameters are randomized.
Fig. 2.
Fig. 2. Overview of the NASA 2014 SABOR campaign. The ship track is highlighted in blue, and the flight tracks are highlighted in magenta. The 31 July 2014 flight track is highlighted in green, together with the superimposed MODIS Aqua true color reflectance.
Fig. 3.
Fig. 3. SABOR 31 July 2014 flight. (a) HSRL-1 atmosphere backscattering coefficient and ocean diffuse attenuation coefficient. (b) HSRL-1 aerosol typing algorithm, where we can see that the aerosol structure for this day is complex with multiple layers and a lofted smoke plume. (c) The atmosphere/ocean results from RSP MAPP and HSRL for this entire day. The following masks are also displayed, where the color indicates the presence of: clouds-above-aircraft (cyan), aircraft not at cruising altitude (magenta), aircraft turns/course corrections (yellow), and clouds below the aircraft (blue).
Fig. 4.
Fig. 4. RSP MAPP ocean retrievals and HSRL-1 ocean products plotted as K d versus b bp . The RSP C2012 ocean bio-optical model retrieval result is super-imposed against the HSRL-1 measurements HSRL-1 column-averaged K d and b bp . Only scenes for deeper waters, defined as having an ocean bottom greater than 30 m, are included.
Fig. 5.
Fig. 5. RSP MAPP aerosol retrievals versus HSRL-1 aerosol products for a time-series of retrievals between 14 UTC and 17 UTC on 31 July 2014. From top: aerosol (a) optical depth, (b) single-scattering albedo at 555 nm, (c), (b) effective radius, (d) real part of the refractive index at 555 nm. The first set of results (v1.21) employed the one-parameter Chowdhary ocean model from 0 to 3    mg / m 3 chlorophyll concentration, while the second set of results (v1.22) employed the extended range from 0 to 10    mg / m 3 .
Fig. 6.
Fig. 6. Overview of the Department of Energy 2012 TCAP campaign. The flight tracks are highlighted in magenta. The 17 July 2012 flight track is highlighted in green, together with the superimposed MODIS Aqua true color reflectance.
Fig. 7.
Fig. 7. TCAP 17 July 2012. (a) HSRL direct measurement of extinction km 1 at 532 nm. (b) HSRL-1 aerosol typing product. (c) Atmosphere retrieval results from the RSP instrument for this entire day. RSP MAPP 532 nm aerosol optical depth and aerosol microphysics retrievals versus HSRL-2 532 nm aerosol optical depth (direct measurement) and HSRL-2 aerosol microphysics products for a time-series of retrievals between 14.5 UTC and 17.5 UTC on 17 July 2012. Aerosol products: (i) optical depth, (ii) single-scattering albedo, (iii) effective radius, (iv) real part of the refractive index. The following masks are also displayed, where the color indicates the presence of: clouds-above-aircraft (cyan), aircraft not at cruising altitude (magenta), aircraft turns/course corrections (yellow), and clouds below the aircraft (blue).
Fig. 8.
Fig. 8. TCAP 17 July 2012: RSP MAPP retrieved lidar intensive/extensive parameters versus HSRL-2 extinction-weighted lidar intensive/extensive parameters from top: optical depth for reference; S a , aerosol lidar ratio [sr] (intensive parameter); Ångstrøm exponent.
Fig. 9.
Fig. 9. SABOR campaign RSP MAPP and HSRL-1 optical depth correlations at 532 nm using HSRL AOD product after a clouds-above-aircraft mask was applied. Each color represents a different day between 18 July to 4 August 2014. The one-to-one line is colored in black, and the dashed black lines represent the desired ± 1 σ accuracy. The red line represents the least-squares bisector.
Fig. 10.
Fig. 10. TCAP campaign RSP MAPP and HSRL-2 optical depth correlations using HSRL AOD product at 532 nm and 355 nm. For TCAP there was no instrument that could detect clouds above the aircraft onboard the aircraft during TCAP, and there was limited reporting of above aircraft clouds, which made clouds-above-aircraft screening difficult. Each color represents a different day in July 2012.
Fig. 11.
Fig. 11. SABOR campaign RSP MAPP and HSRL-1 ocean product correlations of (a)  K d    [ m 1 ] and (b)  b bp    [ m 1 ] , both at 532 nm, for all AAO (Aerosol-Above-Ocean) scenes with an ocean bottom greater than 30 m. Each color represents a different day between 18 July to 4 August 2014. The one-to-one line is colored in black, and the dashed black lines represent the desired ± 1 σ accuracy. The red line represents the least-squares bisector.

Tables (2)

Tables Icon

Table 1. Aerosol Fine/Coarse Mode Ranges (Low, High) a

Tables Icon

Table 2. Aerosol Uncertainty Targets for One Standard Deviation ( 1 σ ) a

Equations (62)

Equations on this page are rendered with MathJax. Learn more.

x = τ 555 f r n f σ g f n r f n i f τ 555 c r n c σ g c n r c n i c v CHL z c z f ,
10 5 τ 555 f 0.6 0.075 r n f 0.15    μm 1.36 n r f 1.65 10 5 n i f 0.03 10 5 τ 555 c 0.4 0.5 r n c 1.5    μm 0.3 σ g f 0.7 0.3 σ g c 0.7 0.01 v 7.0    m / s 0.001 CHL 10    mg / m 3 .
w col = 1 1 | μ g | + 1 | μ 0 | [ ln I 864 ( μ g ) I 960 ( μ g ) α ] 1 / β ,
f = d s 2 μ 0 1 T ,
v ( r ) = 1 r d V ( r ) d ln r = 1 r i = 1 2 V i 2 π σ g i exp [ ( ln r ln r v i 2 σ g i ) 2 ] ,
n ( r ) = 1 r d N ( r ) d ln r = 1 r i = 1 2 N i 2 π σ g i exp [ ( ln r ln r n i 2 σ g i ) 2 ] ,
N i = V i 4 3 π r n i 3 exp ( 4.5 σ g i 2 ) ,
r n i = r v i exp ( 3 σ g i 2 ) .
r eff = r min r max r 3 n ( r ) d r r min r max r 2 n ( r ) d r lognormal r n exp ( 2.5 σ g 2 ) ,
v eff = r min r max ( r r eff ) 2 π r 2 n ( r ) d r r eff 2 r min r max π r 2 n ( r ) d r lognormal exp ( σ g 2 ) 1 ,
χ 2 ( x ) = ϕ ( x ) = ϕ ( x ) data + ϕ ( x ) prior = 1 2 ( f y ) T S ε 1 ( f y ) + 1 2 ( x x a ) T S a 1 ( x x a ) .
χ = 1 m ϕ ( x ) data = 1 m 1 2 ( f y ) T S ε 1 ( f y ) .
x 1 = x 1 / 5 .
b = log x 1 x 1 low x 1 high x 1 .
x 1 = x 1 high 1 + e b + x 1 low 1 + e b .
K b = d f d b = d x d b d f d x = d x d b K = d x d x 1 d x 1 d b K .
χ s 2 = 1 2 ( f y ) T S ε 1 ( f y ) + 1 2 ( b b a ) T S 1 a 1 ( b b a ) ,
b i + 1 = b a + S i [ ( f y ) + K b ( b i b a ) ] ,
x a = ( x low + x high ) / 2 x i .
S a = diag ( σ a σ a ) ,
S ^ 1 ( x ^ ) = K ( x ^ ) T S ε 1 K ( x ^ ) + S a 1 .
Total Radiance = μ 0 F 0 π d s 2 R I , Q , U    [ W / m 2 / sr ] ,
RSP L 1 B Normalized Radiance = μ 0 d s 2 R I , Q , U    [ 1 / sr ] .
R I , Q , U = d s 2 μ 0 ( RSP L 1 B Normalized Radiance )    [ 1 / sr ] .
P TS ( r ) = Ψ C TS r 2 [ β m ( r ) + β a ( r ) ] e 2 0 r [ α m ( r ) + α a ( r ) ] d r ,
P m , 532 ( r ) = F Ψ C m , 532 r 2 β m ( r ) e 2 0 r [ α m ( r ) + α a ( r ) ] d r .
HSRL AOD = τ HSRL = 1 2 ln T ( r 2 ) T ( r 1 ) = 1 2 ln r 2 2 P m , 532 ( r 2 ) β m ( r 1 ) r 1 2 P m , 532 ( r 1 ) β m ( r 2 ) .
S a = i = 0 N α i i = 0 N β i    [ sr ] ,
0 h t α d z = 0.95 0 h α d z or 0 h t β d z = 0.95 0 h β d z .
β = β f + β c , β f c = τ f c h t ω f c p 180 ; f c 4 π ,
α = α f + α c , α f c = τ f c / h t ,
S a = α f + α c β f + β c ,
K d ( z ) = K beam ( z ) cos θ lidar , ocn = 1 2 d ln [ P m , 532 ( r ) r 2 ] d z    [ m 1 ] ,
β p ( z ) = β w [ P a , 532 ( z ) + P a , 532 ( z ) P m , 532 ( z ) + P m , 532 ( z ) ]    [ m 1 sr 1 ] ,
q p 2 π = π / 2 π F p ( Θ ) 4 π sin Θ d Θ χ p , 180 F p ( Θ = 180 ° ) [ unitless ] ,
b bp ( z ) = b p q p = b p 2 π [ χ p , 180 F p ( Θ = 180 ° ) ] = π ( 1    sr ) · β p ( z )    [ m 1 ]
K d = 1 h z = 6 z = 17 K d d z and b bp = 1 h z = 6 z = 17 b bp d z    [ m 1 ] ,
Q 1 = R a * R b * ,
Q n = Q 1 Q n 1 ,
S = n = 1 Q n ,
U = R b e τ a / μ 0 + R b D ,
D = T a + S e τ a / μ 0 + ST a ,
R ( τ a + τ b ) = R a + e τ a / μ U + T a * U ,
T ( τ a + τ b ) = e τ b / μ D + T b e τ a / μ 0 + T b D .
b = b sw ( λ ) + b p ( λ , CHL )    [ m 1 ] ,
b p ( λ , CHL ) = 0.347 [ CHL ] 0.766 ( λ 660 ) k    [ m 1 ] ,
k = { 1 0 CHL < 0.02 , 0.5 ( log 10 [ CHL ] 0.3 ) 0.02 CHL 2 , 0 CHL > 2 .
b bp ( λ , CHL ) = b p ( λ , CHL ) q p ( CHL ) ,
q p 2 π π / 2 π F p ( Θ ) 4 π sin Θ d Θ    [ unitless ] .
q p ( CHL ) ( 0.007 0.0025 log 10 [ CHL ] ) ) [ unitless ] .
b bp ( λ , CHL ) = b p ( λ , CHL ) ( 0.007 0.0025    log 10 [ CHL ] ) )    [ m 1 ] ,
b b ( λ , CHL ) = b b , sw + b bp = 0.5 b sw ( λ ) + b bp ( λ , CHL )    [ m 1 ] .
ω p ( λ , CHL ) = b p ( λ , CHL ) a p ( λ , CHL ) + b p ( λ , CHL ) .
f p ( Θ ) = ( 1 f det ) σ plk f plk ( Θ ) + f det σ det f det ( Θ ) ( 1 f det ) σ plk + f det σ det ,
q p = ( 1 f det ) σ plk q plk + f det σ det q det ( 1 f det ) σ plk + f det σ det .
f det ( CHL ) = 0.61 0.099 χ CHL 0.009 χ CHL 2 ,
K d = d d z [ ln F ν ( z ) ] = 1 F ν d F ν ( z ) d z ,
K d ( λ , CHL ) K w ( λ ) + K bio ( λ , CHL ) [ a w ( λ ) + 0.5 b w ( λ ) ] + χ ( λ ) [ CHL ] e ( λ ) ,
a ocn ( λ , CHL ) = K d ( λ , CHL ) [ 1 α ( λ , CHL , θ 0 ) b b ( λ , CHL ) a ocn ] × μ d ( λ , CHL , θ 0 ) μ u μ d ( λ , CHL , θ 0 ) α ( λ , CHL , θ 0 ) b b ( λ , CHL ) a ocn + μ u    [ m 1 ] ,
a ocn ( λ , CHL ) = 1 2 μ d ( K d α b b ) ± 1 2 μ d 2 ( K d α b b μ u ) 2 4 K d α b b .
a p ( λ , CHL ) = a ocn ( λ , CHL ) a w ( λ ) .
C I = σ R I 2 = ( 2 σ floor μ 0 ) 2 + ( a μ 0 R I ) 2 + ( R Q 2 σ ln K 1 ) 2 + ( R I σ ln α c ) 2 . C Q = σ R Q 2 = ( σ floor 2 μ 0 ) 2 + ( a R I μ 0 ) 2 + ( 1 2 R I σ ln K 1 ) 2 + ( R Q σ ln α c ) 2 + ( R Q σ ln α 1 ) 2 . C U = σ R U 2 = ( σ floor 2 μ 0 ) 2 + ( a R I 2 μ 0 ) 2 ( 1 2 R I 2 σ ln K 1 ) 2 + ( R U σ ln α c ) 2 + ( R U σ ln α 1 ) 2 . C I L = σ R I L 2 = C I 4 + C Q 4 + ( R I + R Q 2 σ ln α c ) 2 + ( R I + R Q 4 σ ln K 1 ) 2 + ( R Q 2 σ ln α 1 ) 2 . C I R = σ R I R 2 = C I 4 + C Q 4 + ( R I R Q 2 σ ln α c ) 2 + ( R I R Q 4 σ ln K 1 ) 2 + ( R Q 2 σ ln α 1 ) 2 . C DoLP = σ DoLP 2 = ( 2 σ floo r μ 0 R I 2 + DoLP 2 ) 2 + ( a μ 0 R I 2 DoLP 2 ) 2 + ( 1 2 σ ln K 1 1 DoLP 2 ) 2 + ( σ ln α 1 DoLP ) 2 + ( 1 2 σ ln K 1 R Q 4 + R U 4 R I 2 ) 2 .

Metrics