Abstract

A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one

Vicente Mico, Carlos Ferreira, Zeev Zalevsky, and Javier García
Opt. Express 22(12) 14929-14943 (2014)

Short-coherence off-axis holographic phase microscopy of live cell dynamics

Stefan Witte, Andrius Plauşka, Margreet C. Ridder, Laura van Berge, Huibert D. Mansvelder, and Marie Louise Groot
Biomed. Opt. Express 3(9) 2184-2189 (2012)

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge
Opt. Lett. 30(5) 468-470 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods Cell Biol. 114, 545–560 (2013).
    [Crossref]
  2. S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
    [Crossref]
  3. M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
    [Crossref]
  4. M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
    [Crossref]
  5. G. von Bally, Holography in Medicine and Biology (Springer, 1979).
  6. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  7. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
  8. C. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref]
  9. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  10. P. Ferraro, S. Grilli, D. Alfieri, S. de Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
    [Crossref]
  11. F. Charrière, F. Montfort, J. Kühn, T. Colomb, A. Marian, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  12. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  13. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  14. D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
    [Crossref]
  15. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  16. T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
    [Crossref]
  17. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [Crossref]
  18. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  19. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [Crossref]
  20. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
    [Crossref]
  21. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [Crossref]
  22. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [Crossref]
  23. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
    [Crossref]
  24. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [Crossref]
  25. Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
    [Crossref]
  26. S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
    [Crossref]
  27. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29, 2399–2401 (2004).
    [Crossref]
  28. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
    [Crossref]
  29. V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
    [Crossref]
  30. S. Reichelt and H. Zappe, “Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing,” Appl. Opt. 44, 5786–5792 (2005).
    [Crossref]
  31. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref]
  32. V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
    [Crossref]
  33. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [Crossref]
  34. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
    [Crossref]
  35. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
    [Crossref]
  36. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
    [Crossref]
  37. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6, 57–119 (2014).
    [Crossref]
  38. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
    [Crossref]
  39. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
    [Crossref]
  40. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
    [Crossref]
  41. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
    [Crossref]
  42. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
    [Crossref]
  43. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
    [Crossref]
  44. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
    [Crossref]
  45. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
    [Crossref]
  46. V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
    [Crossref]
  47. V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
    [Crossref]
  48. J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
    [Crossref]
  49. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
    [Crossref]
  50. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [Crossref]
  51. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  52. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
    [Crossref]

2016 (1)

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

2015 (1)

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

2014 (3)

2013 (2)

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods Cell Biol. 114, 545–560 (2013).
[Crossref]

2012 (5)

V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
[Crossref]

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

2011 (3)

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[Crossref]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

2010 (7)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

2009 (1)

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
[Crossref]

2008 (3)

2007 (1)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

2006 (6)

2005 (6)

2004 (3)

1999 (2)

1998 (1)

1994 (1)

1971 (1)

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Alfieri, D.

Amat-Roldan, I.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Anand, A.

Andrés, R.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Anna, T.

V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
[Crossref]

Artigas, D.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Aspert, N.

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

Badizadegan, K.

Baskurt, O. K.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

Bernet, S.

Bhaduri, B.

Boss, D.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

Canpolat, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

Charrière, F.

Cheng, C. J.

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

Chhaniwal, V.

Choi, W.

Colomb, T.

Coppola, G.

P. Ferraro, S. Grilli, D. Alfieri, S. de Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Cuche, E.

Dan, D.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Dasari, R. R.

de Nicola, S.

P. Ferraro, S. Grilli, D. Alfieri, S. de Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Deflores, L. P.

Depeursinge, C.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref]

F. Charrière, F. Montfort, J. Kühn, T. Colomb, A. Marian, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

Ding, H.

Dorn, A.

Dubois, F.

Dürr, F.

Edwards, C.

Emery, Y.

Fang-Yen, C.

Feld, M. S.

Ferraro, P.

Ferreira, C.

Finizio, A.

Fu, D.

Fürhapter, S.

Gao, P.

Garcia, J.

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

García, J.

García-Martínez, P.

Goddard, L. L.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Grilli, S.

Guo, R.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Harder, I.

Huang, T.

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

Ikeda, T.

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Iwai, H.

Javidi, B.

Jesacher, A.

Joannes, L.

Jourdain, P.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

Katz, J.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

Khodjakov, A.

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods Cell Biol. 114, 545–560 (2013).
[Crossref]

Kim, M.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).

Klein, T.

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

Kühn, J.

Lai, J.

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Legros, J. C.

Lehmann, J.

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Lei, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Leitgeb, R. A.

Li, Z.

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

Limberger, H. G.

Lin, Y. C.

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

Lo, C.

Magidson, V.

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods Cell Biol. 114, 545–560 (2013).
[Crossref]

Magistretti, P.

Magistretti, P. J.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

Malkiel, E.

Mann, C.

Mantel, K.

Marian, A.

Marquet, P.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

F. Charrière, F. Montfort, J. Kühn, T. Colomb, A. Marian, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

Mathew, M.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Maurer, C.

Mehta, D. S.

V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
[Crossref]

Meiselman, H. J.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

Merola, F.

Miccio, L.

Mico, V.

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

Micó, V.

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

Min, J.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Montfort, F.

Nercissian, V.

Nguyen, T. H.

Oh, S.

Paturzo, M.

Pham, H.

Picazo-Bueno, J. A.

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

Pierattini, G.

Popescu, G.

Rappaz, B.

Reichelt, S.

Ritsch-Marte, M.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

Salathé, R. P.

Santos, S. I.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Satterwhite, L. L.

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Sauer, M.

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Schnars, U.

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

Shaked, N. T.

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Sheng, J.

Singh, A. S. G.

Soriano, E.

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

Srivastava, V.

V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
[Crossref]

Striano, V.

Uyuklu, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

van de Linde, S.

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Vaughan, J. C.

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

G. von Bally, Holography in Medicine and Biology (Springer, 1979).

Wäldchen, S.

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Wang, S.

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

Wax, A.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29, 2399–2401 (2004).
[Crossref]

Xue, L.

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

Yamaguchi, I.

Yamauchi, T.

Yan, S.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Yang, Y.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Yao, B.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[Crossref]

Yaqoob, Z.

Yu, L.

Yu, X.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Zalevsky, Z.

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
[Crossref]

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Zappe, H.

Zhang, T.

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

Zhou, R.

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

J. Biomed. Opt. (5)

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref]

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011).
[Crossref]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially-multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

J. Nanophotonics (1)

V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophotonics 3, 031780 (2009).
[Crossref]

J. Neurosci. Methods (1)

M. Mathew, I. Amat-Roldan, R. Andrés, S. I. Santos, D. Artigas, and E. Soriano, “Signalling effect of NIR pulsed lasers on axonal growth,” J. Neurosci. Methods 186, 196–201 (2010).
[Crossref]

J. Opt. (4)

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
[Crossref]

S. Wang, L. Xue, J. Lai, and Z. Li, “Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation,” J. Opt. 14, 065301 (2012).
[Crossref]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16, 125408 (2014).
[Crossref]

V. Srivastava, T. Anna, and D. S. Mehta, “Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells,” J. Opt. 14, 125707 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Methods Cell Biol. (1)

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods Cell Biol. 114, 545–560 (2013).
[Crossref]

Opt. Commun. (2)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Opt. Express (9)

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref]

P. Ferraro, S. Grilli, D. Alfieri, S. de Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
[Crossref]

C. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

Opt. Lett. (11)

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

F. Charrière, F. Montfort, J. Kühn, T. Colomb, A. Marian, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref]

T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
[Crossref]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29, 2399–2401 (2004).
[Crossref]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

Proc. IEEE (1)

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

Sci. Rep. (1)

S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Other (4)

G. von Bally, Holography in Medicine and Biology (Springer, 1979).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

Supplementary Material (3)

NameDescription
» Visualization 1       2D wrapped phase distribution retrieved from DHM
» Visualization 2       3D unwrapped phase distribution retrieved from DHM
» Visualization 3       Comparative between the white light imaging and the retrieved phase distribution from DHM

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental layout for the proposed dual-mode microscope platform. DM1 and DM2, dichroic mirrors; M1, M2, M3, and M4, metallic mirrors; BS1 and BS2, beam splitters; L1, L2, and L3, lenses; CCD1 and CCD2, digital cameras; SP, spatial filter.

Fig. 2.
Fig. 2.

Experimental results involving a 45 μm microbead imaged by DHM: (a) the recorded hologram (the inset is a magnified area to clearly show the interferometric fringes); (b) the FT of (a) showing the hologram diffraction orders; (c) the retrieved wrapped phase distribution coming from (b) after Fourier domain filtering and centering process; (d) the unwrapped phase distribution derived from (c); (e) the thickness profile from (d) and computed according to Eq. (1); and (f) 3D plot of the thickness info. Orange scale bars are 10 μm.

Fig. 3.
Fig. 3.

Experimental results involving 3 μm diameter beads imaged by DHM: (a) the recorded hologram; (b) the ROI marked with a solid line white rectangle in (a) where the inset shows the interferometric fringes; (c) and (d) the retrieved amplitude and unwrapped phase distributions from (b), respectively; and (d) the 3D thickness plot computed from (d). Orange scale bars are 10 μm.

Fig. 4.
Fig. 4.

Experimental results involving a conical bead: (a) SEM image and (b) thickness profile of the bead retrieved from DHM.

Fig. 5.
Fig. 5.

Experimental results involving a simulated dynamic biosample: (a) 2D wrapped phase (Visualization 1) and (b) 3D unwrapped (Visualization 2) phase distributions retrieved from DHM.

Fig. 6.
Fig. 6.

Experimental results involving biosamples: (a)–(c), (d)–(f), and (g)–(i) are, in the same order, the bright field (intensity) image provided by white light illumination, the 2D quantitative phase imaging provided by DHM, and the 3D geometry computed from the phase values for NG108 neuroblastoma cells (first row), breast cancer cells MDA-MB 231 (second row), and hippocampal neuronal cells (third row), respectively. Scale bars (white solid lines) at the lower right corner of (b)–(e)–(h) represent 15 μm.

Fig. 7.
Fig. 7.

Experimental results involving a dynamic biosample (hippocampal neuron): (a) intensity image provided by the white light visualization mode, (b) retrieved phase distribution from DHM, and (c) and (d) averaged plots along the points 1 and 2 of the intensity and phase images, respectively, and for the first (t=0  s) and the last (t=100  s) frames of the whole video sequence. Visualization 3 includes image sequences presented in (a) and (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ(x,y)=2πλΔnΔt(x,y)Δt(x,y)=λ2πΔnΔϕ(x,y).

Metrics