Abstract

We demonstrate a computer-generated metasurface hologram in which four distinct images are encoded at four different W-band (75–110 GHz) frequencies. The metasurface hologram consists of a planar array of resonant metamaterial elements excited by a collimated reference beam incident on the hologram at an oblique angle. Each of the images is encoded by a subset of metamaterial elements that are resonant at the specific excitation frequency and are spatially positioned to achieve a desired phase distribution in the plane in conjunction with the reference wave. The phase-only hologram is optimized using the Gerschberg–Saxton algorithm. The four well-defined images are produced at specific distances within the Fresnel zone of the aperture.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase and magnitude constrained metasurface holography at W-band frequencies

Guy Lipworth, Nicholas W. Caira, Stéphane Larouche, and David R. Smith
Opt. Express 24(17) 19372-19387 (2016)

Metamaterial apertures for coherent computational imaging on the physical layer

Guy Lipworth, Alex Mrozack, John Hunt, Daniel L. Marks, Tom Driscoll, David Brady, and David R. Smith
J. Opt. Soc. Am. A 30(8) 1603-1612 (2013)

Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces

Weimin Ye, Xin Li, Juan Liu, and Shuang Zhang
Opt. Express 24(22) 25805-25815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  2. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [Crossref]
  3. W. H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9, 639–643 (1970).
    [Crossref]
  4. P. Lalanne and D. Lemercier-lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
    [Crossref]
  5. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
    [Crossref]
  6. S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
    [Crossref]
  7. Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst, and D. R. Smith, “Arbitrary birefringent metamaterials for holographic optics at λ = 1.55  μm,” Opt. Express 21, 26620–26630 (2013).
    [Crossref]
  8. B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
    [Crossref]
  9. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  10. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  11. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  12. S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
    [Crossref]
  13. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  14. G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
    [Crossref]
  15. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  16. M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
    [Crossref]
  17. W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, and Y. Jiang, “Full-color hologram using spatial multiplexing of dielectric metasurface,” Opt. Lett. 41, 147–150 (2016).
    [Crossref]
  18. B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
    [Crossref]
  19. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
    [Crossref]
  20. W. Freese, T. Kampfe, E.-B. Kley, and A. Tunnerman, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).
    [Crossref]
  21. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  22. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  23. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

2016 (5)

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, and Y. Jiang, “Full-color hologram using spatial multiplexing of dielectric metasurface,” Opt. Lett. 41, 147–150 (2016).
[Crossref]

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
[Crossref]

2015 (4)

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

2013 (4)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst, and D. R. Smith, “Arbitrary birefringent metamaterials for holographic optics at λ = 1.55  μm,” Opt. Express 21, 26620–26630 (2013).
[Crossref]

2012 (2)

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

2010 (1)

1996 (2)

F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
[Crossref]

P. Lalanne and D. Lemercier-lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1970 (1)

1966 (1)

Ambrosio, A.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Bai, X.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Brown, B. R.

Caira, N. W.

Capasso, F.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Chan, C. H.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, B.-J.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Chen, J.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Cheng, C.-C.

Chu, W.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Dhar, S.

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Eilenberger, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Fainman, Y.

Freese, W.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Gollub, J.

Gong, Q.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Gowda, V. R.

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Helgert, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Imani, M. F.

Jiang, H.

Jiang, Y.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Jokerst, N. M.

Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst, and D. R. Smith, “Arbitrary birefringent metamaterials for holographic optics at λ = 1.55  μm,” Opt. Express 21, 26620–26630 (2013).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Kampfe, T.

Kanhaiya, P.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kley, E. B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Kley, E.-B.

Lalanne, P.

P. Lalanne and D. Lemercier-lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Larouche, S.

Lederer, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Lee, W. H.

Lemercier-lalanne, D.

P. Lalanne and D. Lemercier-lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, Q. T.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Li, Y.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Lipworth, G.

Liu, B.

Lohmann, A. W.

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Ng, K. B.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Odabasi, H.

Pei, Y.

Pertsch, T.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Qu, S.-W.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Rockstuhl, C.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Rose, A.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Scherer, A.

Setzpfandt, F.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Smith, D. R.

Song, J.

Song, Z.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Sun, C.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Sun, P.-C.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Trofatter, P.

Tsai, Y.-J.

Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst, and D. R. Smith, “Arbitrary birefringent metamaterials for holographic optics at λ = 1.55  μm,” Opt. Express 21, 26620–26630 (2013).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Tunnerman, A.

Tünnermann, A.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Tyan, R.-C.

Tyler, T.

Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst, and D. R. Smith, “Arbitrary birefringent metamaterials for holographic optics at λ = 1.55  μm,” Opt. Express 21, 26620–26630 (2013).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Walther, B.

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, W.-W.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Xiao, Y. F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Xu, F.

Xu, L.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Yang, D.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Yi, H.

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Yue Bun Pun, E.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Yurduseven, O.

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Zhao, W.

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Adv. Mater. (1)

B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater. 24, 6300–6304 (2012).
[Crossref]

Appl. Opt. (3)

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Nano Lett. (1)

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Nat. Commun. (3)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, S. Dhar, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial hologram,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. Rev. Lett. (1)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Sci. Adv. (2)

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2, e1501258 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2, e1601102 (2016).
[Crossref]

Sci. Rep. (1)

S.-W. Qu, W.-W. Wu, B.-J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Rendering of the multispectral response of our holographic metasurface. A broadband W-band horn illuminates our metasurface, and the goal radiation patterns are generated at their separate, intended frequencies, with blue, green, orange, and yellow corresponding to 79, 88, 97, and 106 GHz (same color map as Fig. 5).

Fig. 2.
Fig. 2.

Experimental setup for our off-axis transmission hologram. The inset shows the meander-line element design with etching dimensions w=25  μm, g=100  μm, and l ranging from 365 to 500 μm. The pixel size is 1  mm×1  mm.

Fig. 3.
Fig. 3.

Frequency-dependent, normalized polarizabilities α for each length of meander-line metamaterial used. Markers are located at the operation frequencies of the hologram to show the contribution that each element has at each frequency. These contributions were incorporated when designing the hologram.

Fig. 4.
Fig. 4.

Desired (ideal) images that the hologram is designed to reconstruct. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Fig. 5.
Fig. 5.

Spatial mapping of different element locations on the hologram. The color map corresponds to the intended frequency of operation for each pixel, such that the metamaterial element used at each pixel provides the maximum throughput for that frequency with Off meaning that no element is located at that pixel. A 2.5 cm scale bar is included in the bottom left (total size is 20  cm×20  cm).

Fig. 6.
Fig. 6.

Simulated fields from the hologram at the image plane. Contributions from each frequency-dependent element in the hologram were propagated 15 cm to the image-plane at the desired frequencies. The fields are normalized at each frequency. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Fig. 7.
Fig. 7.

Fabricated hologram with zoomed inset showing approximately 0.1% of the total hologram area. The unit cell length u is 1 mm with the full hologram being 200u×200u.

Fig. 8.
Fig. 8.

Experimentally radiated fields from the hologram at the desired frequencies. Fields were measured using an open-ended waveguide probe at the image plane (15 cm from the hologram). The fields are normalized at each frequency. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Fig. 9.
Fig. 9.

Experimentally radiated fields from the hologram at frequencies above and below the goal frequency of 88 GHz. The fields are normalized to the goal. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Fig. 10.
Fig. 10.

Experimentally radiated fields from the hologram at distances before and after the goal distance (15 cm from the hologram). Fields were propagated using a plane-to-plane propagation using the experimentally measured fields at 15 cm. The fields are normalized to the goal distance. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Fig. 11.
Fig. 11.

Simulated fields from a hologram with eight images encoded using resonators with Q-factor of 5 (top) and 50 (bottom). The first four encoded images are the same from the experiment, and the second four images are rotated versions of the first four. A 5 cm scale bar is included in the bottom left (each image is 20  cm×20  cm).

Metrics