Abstract

Grating-based single-shot digital lens-free holography with spatial spectral multiplexing is proposed to realize full field-of-view (FOV) imaging for weak-scattering objects. Multiple object waves are generated by a one-dimensional grating that is placed in near contact with the object to avoid the cross talk among different diffraction orders during reconstruction. A multiplexed off-axis hologram is created by interference between the object waves and reference wave and captured by an image sensor in one shot. Multiple imaging areas corresponding to the captured object waves can be simultaneously retrieved during reconstruction. A formula which guarantees full FOV imaging without cross talk or information loss is presented. The imaging experiments of a USAF resolution target are presented to demonstrate the feasibility of this method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surpassing digital holography limits by lensless object scanning holography

Vicente Micó, Carlos Ferreira, and Javier García
Opt. Express 20(9) 9382-9395 (2012)

Super-resolution in digital holography by a two-dimensional dynamic phase grating

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro
Opt. Express 16(21) 17107-17118 (2008)

Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects

Kyoji Matsushima and Noriaki Sonobe
Appl. Opt. 57(1) A150-A156 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Ulf and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [Crossref]
  2. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
    [Crossref]
  3. V. P. Pandiyan and R. John, “Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy,” Appl. Opt. 55, A54–A59 (2016).
    [Crossref]
  4. M. Aakhte, V. Abbasian, E. A. Akhlaghi, A.-R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
    [Crossref]
  5. A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
    [Crossref]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  7. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [Crossref]
  8. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
    [Crossref]
  9. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
    [Crossref]
  10. F. Soulez, L. Denis, É. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).
    [Crossref]
  11. B. Kemper and G. Von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  12. T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Methods 11, 1221–1228 (2014).
    [Crossref]
  13. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009).
    [Crossref]
  14. L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014).
    [Crossref]
  15. D. Kong, L. Cao, H. Zhang, Q. He, and G. Jin, “Holographic lensless interference encryption based on single spatial light modulator,” in IEEE 14th International Conference on Industrial Informatics (INDIN) (IEEE, 2016), pp. 562–566.
  16. T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
    [Crossref]
  17. T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496–6503 (2003).
    [Crossref]
  18. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  19. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
    [Crossref]
  20. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  21. O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
    [Crossref]
  22. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref]
  23. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002).
    [Crossref]
  24. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
    [Crossref]
  25. V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
    [Crossref]
  26. V. Micó, C. Ferreira, and J. García, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
    [Crossref]
  27. L. Granero, Z. Zalevsky, and V. Micó, Resolution and field of view improvement in digital holography using a VCSEL source array, in 10th Euro-American Workshop on Information Optics (WIO) (IEEE, 2011), pp. 1–3.
  28. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
    [Crossref]
  29. Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
    [Crossref]
  30. Z. Zalevsky, E. Gur, J. Garcia, V. Micó, and B. Javidi, “Superresolved and field-of-view extended digital holography with particle encoding,” Opt. Lett. 37, 2766–2768 (2012).
    [Crossref]
  31. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
    [Crossref]
  32. J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56, A79–A88 (2017).
    [Crossref]
  33. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
    [Crossref]
  34. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [Crossref]
  35. Y. Lu, Y. Liu, P. Li, Y. Fu, and J. Zhao, “Multiplexed off-axis holography using a transmission diffraction grating,” Opt. Lett. 41, 512–515 (2016).
    [Crossref]
  36. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [Crossref]
  37. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
    [Crossref]
  38. J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
    [Crossref]
  39. V. Bianco, P. Memmolo, M. Paturzo, and P. Ferraro, “On-speckle suppression in IR digital holography,” Opt. Lett. 41, 5226–5229 (2016).
    [Crossref]
  40. W. Zhang, L. Cao, H. Zhang, H. Zhang, C. Han, G. Jin, and Y. Sheng, “Quantitative study on a resampling mask method for speckle reduction with amplitude superposition,” Appl. Opt. 56, F205–F212 (2017).
    [Crossref]
  41. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. A 59, 799–804 (1969).
    [Crossref]
  42. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
    [Crossref]
  43. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011).
    [Crossref]

2017 (3)

2016 (3)

2015 (2)

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

2014 (2)

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Methods 11, 1221–1228 (2014).
[Crossref]

L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014).
[Crossref]

2013 (4)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

V. Micó, C. Ferreira, and J. García, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (5)

2009 (4)

2008 (3)

2007 (2)

2006 (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

2005 (1)

2003 (2)

2002 (3)

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002).
[Crossref]

S. Ulf and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

1995 (1)

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

1986 (1)

1969 (1)

G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. A 59, 799–804 (1969).
[Crossref]

Aakhte, M.

Abbasian, V.

Akhlaghi, E. A.

Alexandrov, S. A.

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Allier, C. P.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Anand, A.

Babovsky, H.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Barbastathis, G.

Bianco, V.

Bishara, W.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Brady, D. J.

Bryanston-Cross, P.

Bühl, J.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Cao, L.

Choi, K.

Claus, D.

Cobra, D.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Colomb, T.

Comunello, E.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Coskun, A. F.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Cox, I. J.

Cuche, E.

De Nicola, S.

Demirci, U.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Deng, L.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Denis, L.

Depeursinge, C.

Di, J.

Doh, K. B.

T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496–6503 (2003).
[Crossref]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Domínguez-Caballero, J. A.

Eldar, Y. C.

Emery, Y.

Fan, Q.

Ferraro, P.

Ferreira, C.

Finizio, A.

Fournier, C.

Fu, Y.

Garcia, J.

García, J.

Ge, Q.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Goepfert, C.

Goodman, J. W.

Granero, L.

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

L. Granero, Z. Zalevsky, and V. Micó, Resolution and field of view improvement in digital holography using a VCSEL source array, in 10th Euro-American Workshop on Information Optics (WIO) (IEEE, 2011), pp. 1–3.

Greenbaum, A.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Grilli, S.

Gur, E.

Gutzler, T.

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Hahn, J.

Han, C.

He, Q.

L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014).
[Crossref]

D. Kong, L. Cao, H. Zhang, Q. He, and G. Jin, “Holographic lensless interference encryption based on single spatial light modulator,” in IEEE 14th International Conference on Industrial Informatics (INDIN) (IEEE, 2016), pp. 562–566.

Hennequin, Y.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Hillman, T. R.

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Horisaki, R.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Iliescu, D.

Inci, F.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Javidi, B.

Jiang, H.

Jin, G.

John, R.

Jüptner, W. P. O.

S. Ulf and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Kemper, B.

Kiessling, A.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Kim, T.

Kong, D.

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

D. Kong, L. Cao, H. Zhang, Q. He, and G. Jin, “Holographic lensless interference encryption based on single spatial light modulator,” in IEEE 14th International Conference on Industrial Informatics (INDIN) (IEEE, 2016), pp. 562–566.

Kowarschik, R.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Li, J.

Li, P.

Lim, S.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Liu, J.

Liu, Y.

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Loomis, N.

Lu, Y.

Luo, W.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Ma, Z.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Magistretti, P. J.

Marks, D. L.

Marquet, P.

Massig, J. H.

Matsushima, K.

McLeod, E.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Memmolo, P.

Meng, H.

Merola, F.

Micó, V.

Moradi, A.-R.

Mudanyali, O.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Ozcan, A.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

Pan, G.

Pandiyan, V. P.

Paturzo, M.

Poon, T. C.

T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496–6503 (2003).
[Crossref]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Rappaz, B.

Rinehart, M. T.

Sampson, D. D.

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Schilling, B. W.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Schulz, T. J.

Shaked, N. T.

Sheng, Y.

Sheppard, C. J. R.

Shimobaba, T.

Shinoda, K. K.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Sobieranski, A. C.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Soulez, F.

Su, T.-W.

Sun, W.

Suzuki, Y.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Takashima, Y.

Teitell, M. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Methods 11, 1221–1228 (2014).
[Crossref]

Tekin, H. C.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Thiébaut, É.

Tian, L.

Toraldo di Francia, G.

G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. A 59, 799–804 (1969).
[Crossref]

Ulf, S.

S. Ulf and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Von Bally, G.

Von Wangenheim, A.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Wax, A.

Wilde, J. P.

Wu, M. H.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Wu, Y.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yang, Y.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Yuksekkaya, M.

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Zalevsky, Z.

Zangle, T. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Methods 11, 1221–1228 (2014).
[Crossref]

Zhai, H.

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

Zhang, H.

Zhang, P.

Zhang, W.

Zhao, J.

Zhao, Y.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Appl. Opt. (13)

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[Crossref]

T. C. Poon, T. Kim, and K. B. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496–6503 (2003).
[Crossref]

B. Kemper and G. Von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
[Crossref]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[Crossref]

K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
[Crossref]

D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011).
[Crossref]

V. Micó, C. Ferreira, and J. García, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014).
[Crossref]

V. P. Pandiyan and R. John, “Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy,” Appl. Opt. 55, A54–A59 (2016).
[Crossref]

J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56, A79–A88 (2017).
[Crossref]

M. Aakhte, V. Abbasian, E. A. Akhlaghi, A.-R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
[Crossref]

W. Zhang, L. Cao, H. Zhang, H. Zhang, C. Han, G. Jin, and Y. Sheng, “Quantitative study on a resampling mask method for speckle reduction with amplitude superposition,” Appl. Opt. 56, F205–F212 (2017).
[Crossref]

Appl. Phys. Lett. (1)

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

J. Opt. (1)

Y. Wu, Y. Yang, H. Zhai, Z. Ma, L. Deng, and Q. Ge, “Single-exposure approach for expanding the sampled area of a dynamic process by digital holography with combined multiplexing,” J. Opt. 15, 085402 (2013).
[Crossref]

J. Opt. Soc. Am. A (4)

Light Sci. Appl. (1)

A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. Von Wangenheim, and U. Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution,” Light Sci. Appl. 4, e346 (2015).
[Crossref]

Meas. Sci. Technol. (1)

S. Ulf and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Nat. Methods (1)

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Methods 11, 1221–1228 (2014).
[Crossref]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 240–247 (2013).
[Crossref]

Opt. Commun. (1)

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Opt. Eng. (1)

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Other (2)

D. Kong, L. Cao, H. Zhang, Q. He, and G. Jin, “Holographic lensless interference encryption based on single spatial light modulator,” in IEEE 14th International Conference on Industrial Informatics (INDIN) (IEEE, 2016), pp. 562–566.

L. Granero, Z. Zalevsky, and V. Micó, Resolution and field of view improvement in digital holography using a VCSEL source array, in 10th Euro-American Workshop on Information Optics (WIO) (IEEE, 2011), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the FOV with pixel pitch p.

Fig. 2.
Fig. 2.

(a) Conventional imaging of weak-scattering objects; (b) imaging of weak-scattering objects by grating modulation.

Fig. 3.
Fig. 3.

Digital lens-free holographic setup for full FOV imaging with IA extension based on a diffraction grating. M, mirror; BE, beam expander; BS, beam splitter; CCD, charge-coupled device.

Fig. 4.
Fig. 4.

Diagram of object waves with different propagation direction based on diffraction orders. There is spatial shifting between different orders, so the captured area is different, which extends the IA.

Fig. 5.
Fig. 5.

Diagrams of the quantitative relationship among parameters. b is the width of the captured area. (a) With l=l0·b is spatial linear separation between adjacent orders in this case; (b) with l<l0·b is larger than spatial linear separation between adjacent orders in this case; (c) with l>l0·b is smaller than spatial linear separation between adjacent orders in this case; (d) general case in which there is gap l* between the object and the grating.

Fig. 6.
Fig. 6.

Results of the numerical model. (a) Original object with 500  pixels×500  pixels; (b) captured hologram with 500  pixels×150  pixels; (c) spectra of the hologram; (d)–(f) reconstructions under different conditions. Only (e) is the reconstruction from (b); (d) and (f) are not; (d) reconstruction by conventional method without grating during the hologram recording; (e) reconstruction by the proposed method; (f) reconstruction with gap between the object and the grating.

Fig. 7.
Fig. 7.

Experimental results. (a) Captured hologram; (b) spectra of the hologram; (c) magnification of the area bounded by a red rectangle in (d); (d) reconstruction with full FOV by the proposed method; (e) reference image with nearly the same magnification as (d).

Fig. 8.
Fig. 8.

Quantitative relationship among pixel number, pixel pitch, and grating period with the fixed wavelength λ=532  nm and diffraction distance l=20  mm.

Fig. 9.
Fig. 9.

MSE of reconstructions varies with distance between grating and CCD. When l=13.39  mm=l0, the MSE is lowest with highest reconstruction quality. When l=10  mm<l0, the MSE is larger with side information loss. When l=17  mm>l0, the MSE is larger with inside information loss.

Fig. 10.
Fig. 10.

MSE of reconstructions varies with the gap l* between the object and the grating. With l* increasing, the MSE increases in an undulating fashion.

Tables (1)

Tables Icon

Table 1. Parameters of the Grating-Based System

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

FOV=λzp,
I=(O1+O0+O+1+R)(O1+O0+O+1+R)*=(O1*O0+O0*O1+O1*O+1+O+1*O1+O+1*O0+O0*O+1)+O1R*+O0R*+O+1R*+O1*R+O0*R+O+1*R+(|O1|2+|O0|2+|O+1|2+|R|2)=c+o1+o2+o3+t1+t2+t3+z,
sinθn=nλd,
ϕn=exp(ikxsinθn),
b=lΔθ=lλd.
b=lλd=np.
g(x,y)=n=+pnexp(i2πnf0x),
t1(x,y)=t0(x,y)h(x,y,l*),
h(x,y,l*)=1iλexp[ik(l*2+x2+y2)1/2](l*2+x2+y2)1/2
O(x,y)={[t0(x,y)h(x,y,l*)]n=+pnexp(i2πnf0x)}h(x,y,l).
O(fx,fy)={[T0(fx,fy)H(fx,fy,l*)]n=+pnδ(fxnf0,fy)}H(fx,fy,l)=[n=+pnT0(fxnf0,fy)H(fxnf0,fy,l*)]H(fx,fy,l),
H(fx,fy,l*)=exp(ikl*1(fxλ)2(fyλ)2)
O(fx,fy)=(n=1+1pnT0(fxnf0,fy))H(fx,fy,l).
O(fx,fy)=(n=1+1T0(fxnf0,fy))H(fx,fy,l).
MSE=1M×Nm=1Mn=1N(I0(m,n)Ir(m,n))2,

Metrics