Abstract

Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-color large-scaled computer-generated holograms using RGB color filters

Yasuhiro Tsuchiyama and Kyoji Matsushima
Opt. Express 25(3) 2016-2030 (2017)

Digitized holography: modern holography for 3D imaging of virtual and real objects

Kyoji Matsushima, Yasuaki Arima, and Sumio Nakahara
Appl. Opt. 50(34) H278-H284 (2011)

Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique

Kyoji Matsushima, Masaki Nakamura, and Sumio Nakahara
Opt. Express 22(20) 24450-24465 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
    [Crossref]
  2. H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).
    [Crossref]
  3. K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
    [Crossref]
  4. K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
    [Crossref]
  5. H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
    [Crossref]
  6. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [Crossref]
  7. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref]
  8. P. Picart, ed., New Techniques in Digital Holography (Wiley, 2015).
  9. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  10. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
    [Crossref]
  11. D. Fujita, K. Matsushima, and S. Nakahara, “Digital resizing of reconstructed object images in digitized holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DW2A.7.
  12. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
    [Crossref]
  13. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633  nm by digital holography,” Appl. Opt. 41, 4775–4782 (2002).
    [Crossref]
  14. S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669–5676 (2006).
    [Crossref]
  15. S. Ding, S. Cao, Y. F. Zheng, and R. L. Ewing, “From image pair to a computer generated hologram for a real-world scene,” Appl. Opt. 55, 7583–7592 (2016).
    [Crossref]
  16. H. Zheng, T. Wang, L. Dai, and Y. Yu, “Holographic imaging of full-color real-existing three-dimensional objects with computer-generated sequential kinoforms,” Chin. Opt. Lett. 9, 040901 (2011).
    [Crossref]
  17. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
    [Crossref]
  18. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864–2870 (2001).
    [Crossref]
  19. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537–1545 (2003).
    [Crossref]
  20. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754–5760 (2007).
    [Crossref]
  21. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026–4036 (2006).
    [Crossref]
  22. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4  K IP images to 8  K holograms,” Opt. Express 20, 21645–21655 (2012).
    [Crossref]
  23. J. Kim, J.-H. Jung, C. Jang, and B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21, 18742–18753 (2013).
    [Crossref]
  24. S.-K. Lee, S.-I. Hong, Y.-S. Kim, H.-G. Lim, N.-Y. Jo, and J.-H. Park, “Hologram synthesis of three-dimensional real objects using portable integral imaging camera,” Opt. Express 21, 23662–23670 (2013).
    [Crossref]
  25. N. Chen, Z. Ren, and E. Y. Lam, “High-resolution Fourier hologram synthesis from photographic images through computing the light field,” Appl. Opt. 55, 1751–1756 (2016).
    [Crossref]
  26. Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
    [Crossref]
  27. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19, 9086–9101 (2011).
    [Crossref]
  28. S. Igarashi, T. Nakamura, and M. Yamaguchi, “Fast method of calculating a photorealistic hologram based on orthographic ray-wavefront conversion,” Opt. Lett. 41, 1396–1399 (2016).
    [Crossref]
  29. M. Yamaguchi, K. Wakunami, and M. Inaniwa, “Computer generated hologram from full-parallax 3D image data captured by scanning vertical camera array,” Chin. Opt. Lett. 12, 060018 (2014).
    [Crossref]
  30. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
    [Crossref]
  31. K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
    [Crossref]
  32. T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).
    [Crossref]
  33. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [Crossref]

2017 (3)

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

2016 (3)

2015 (1)

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (2)

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4  K IP images to 8  K holograms,” Opt. Express 20, 21645–21655 (2012).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

2011 (4)

2009 (3)

2008 (1)

2007 (1)

2006 (2)

2003 (1)

2002 (1)

2001 (1)

1999 (1)

1997 (1)

1994 (1)

1967 (1)

Abookasis, D.

Arai, D.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Arima, Y.

Binet, R.

Cao, S.

Chen, N.

Colineau, J.

Dai, L.

Ding, S.

Endo, Y.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Ewing, R. L.

Fujita, D.

D. Fujita, K. Matsushima, and S. Nakahara, “Digital resizing of reconstructed object images in digitized holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DW2A.7.

Hong, S.-I.

Hwang, D.-C.

Ichihashi, Y.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4  K IP images to 8  K holograms,” Opt. Express 20, 21645–21655 (2012).
[Crossref]

Igarashi, S.

Inaniwa, M.

Ito, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Jang, C.

Jo, N.-Y.

Jung, J.-H.

Jüptner, W.

Kakue, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Katz, B.

Kim, E.-S.

Kim, J.

Kim, S.-C.

Kim, Y.-S.

Kurita, T.

Lam, E. Y.

Lee, B.

Lee, D.-H.

Lee, S.-K.

Lehureau, J.-C.

Li, Y.

Lim, H.-G.

Lohmann, A. W.

Masuji, S.

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Matsushima, K.

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref]

T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).
[Crossref]

D. Fujita, K. Matsushima, and S. Nakahara, “Digital resizing of reconstructed object images in digitized holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DW2A.7.

Mishina, T.

Nakahara, S.

Nakamura, M.

Nakamura, T.

Nakatsuji, T.

Nishi, H.

Oi, R.

Okano, F.

Okui, M.

Osten, W.

Paris, D. P.

Park, J.-H.

Ren, Z.

Rosen, J.

Sakamoto, Y.

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Schnars, U.

Seebacher, S.

Senoh, T.

Shaked, N. T.

Shimobaba, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref]

Sonobe, N.

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Stern, A.

Tsuchiyama, Y.

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
[Crossref]

Wagner, C.

Wakunami, K.

Wang, T.

Yamaguchi, I.

Yamaguchi, M.

Yamamoto, K.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4  K IP images to 8  K holograms,” Opt. Express 20, 21645–21655 (2012).
[Crossref]

Yu, Y.

Zhang, T.

Zheng, H.

Zheng, Y. F.

Appl. Opt. (15)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[Crossref]

C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[Crossref]

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864–2870 (2001).
[Crossref]

R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633  nm by digital holography,” Appl. Opt. 41, 4775–4782 (2002).
[Crossref]

A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
[Crossref]

T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026–4036 (2006).
[Crossref]

S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669–5676 (2006).
[Crossref]

T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[Crossref]

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
[Crossref]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).
[Crossref]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref]

N. Chen, Z. Ren, and E. Y. Lam, “High-resolution Fourier hologram synthesis from photographic images through computing the light field,” Appl. Opt. 55, 1751–1756 (2016).
[Crossref]

S. Ding, S. Cao, Y. F. Zheng, and R. L. Ewing, “From image pair to a computer generated hologram for a real-world scene,” Appl. Opt. 55, 7583–7592 (2016).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

Chin. Opt. Lett. (2)

J. Electron. Imaging (1)

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Opt. Express (8)

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref]

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754–5760 (2007).
[Crossref]

K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
[Crossref]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19, 9086–9101 (2011).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4  K IP images to 8  K holograms,” Opt. Express 20, 21645–21655 (2012).
[Crossref]

J. Kim, J.-H. Jung, C. Jang, and B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21, 18742–18753 (2013).
[Crossref]

S.-K. Lee, S.-I. Hong, Y.-S. Kim, H.-G. Lim, N.-Y. Jo, and J.-H. Park, “Hologram synthesis of three-dimensional real objects using portable integral imaging camera,” Opt. Express 21, 23662–23670 (2013).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

K. Matsushima, Y. Tsuchiyama, N. Sonobe, S. Masuji, M. Yamaguchi, and Y. Sakamoto, “Full-color large-scaled computer-generated holograms for physical and non-physical objects,” Proc. SPIE 10233, 1023318 (2017).
[Crossref]

Other (2)

P. Picart, ed., New Techniques in Digital Holography (Wiley, 2015).

D. Fujita, K. Matsushima, and S. Nakahara, “Digital resizing of reconstructed object images in digitized holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DW2A.7.

Supplementary Material (1)

NameDescription
» Visualization 1       Optical reconstruction of fabricated large-scale full-color CGH.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Digitized holography: (a) schematic illustration of the concept, and (b) optical reconstruction of a high-definition CGH called “Bear-II” created using digitized holography [10]. Bear-II is composed of more than four billion pixels.

Fig. 2.
Fig. 2.

Experimental setup used to capture an object field by lensless Fourier synthetic aperture digital holography at three wavelengths. M, mirror; S, shutter; ND, neutral density filter; HWP, half-wavelength plate; BS, beam splitter; PBS, polarizing beam splitter; MO, microscope objective; SF, spatial filter.

Fig. 3.
Fig. 3.

Photograph of the subject used for the experiment.

Fig. 4.
Fig. 4.

Amplitude images of object fields captured at three wavelengths.

Fig. 5.
Fig. 5.

Amplitude images of the Fourier transformed object fields (a) 633 nm (red), (b) 532 nm (green), and (c) 488 nm (blue).

Fig. 6.
Fig. 6.

Mixed 3D scene composed of physical and nonphysical objects.

Fig. 7.
Fig. 7.

Models of nonphysical objects: (a) polygon-meshed objects, and (b) digital image used to provide the background.

Fig. 8.
Fig. 8.

Binary mask used to perform occlusion processing by the silhouette method.

Fig. 9.
Fig. 9.

Procedure used for silhouette shielding of the physical object.

Fig. 10.
Fig. 10.

Optical reconstruction of full-color CGH for the physical object only. The pictures were taken from different angles.

Fig. 11.
Fig. 11.

Optical reconstruction of the full-color high-definition CGH “Tea Time.” The pictures were taken from different angles (see Visualization 1).

Tables (2)

Tables Icon

Table 1. Parameters Used for Capture of Object Fields at Three Wavelengths

Tables Icon

Table 2. Parameters of Fabricated Full-Color CGH of Mixed 3D Scene

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ; λ ) = F { f s ( x s , y s ; λ ) } u s = x / ( λ d R ) , v s = y / ( λ d R ) × exp [ i π λ d R ( x 2 + y 2 ) ] ,
Δ = λ d R N Δ S ,
I ( x , y ) = | O ( x , y ) + R ( x , y ) | 2 2 Re { O ( x , y ) R * ( x , y ) } + B ,