Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we use a glass microsphere incorporated into a digital holographic microscope to increase the effective resolution of the system, aiming at precise cell identification. A Mirau interferometric objective is employed in the experiments, which can be used for a common-path digital holographic microscopy (DHMicroscopy) arrangement. High-magnification Mirau objectives are expensive and suffer from low working distances, yet the commonly used low-magnification Mirau objectives do not have high lateral resolutions. We show that by placing a glass microsphere within the working distance of a low-magnification Mirau objective, its effective numerical aperture can be increased, leading to super-resolved three-dimensional images. The improvement in the lateral resolution depends on the size and vertical position of microsphere, and by varying these parameters, the lateral resolution and magnification may be adjusted. We used the information from the super-resolution DHMicroscopy to identify thalassemia minor red blood cells (tRBCs). Identification is done by comparing the volumetric measurements with those of healthy RBCs. Our results show that microsphere-assisted super-resolved Mirau DHMicroscopy, being common path and off-axis in nature, has the potential to serve as a benchtop device for cell identification and biomedical measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Cell shape identification using digital holographic microscopy

Johan Zakrisson, Staffan Schedin, and Magnus Andersson
Appl. Opt. 54(24) 7442-7448 (2015)

Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification

Siddharth Rawat, Satoru Komatsu, Adam Markman, Arun Anand, and Bahram Javidi
Appl. Opt. 56(9) D127-D133 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved