Abstract

Full-field optical coherence microscopy (FFOCM) is an optical technique, based on low-coherence interference microscopy, for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. The differences in refractive index between the sample and the immersion medium of the microscope objectives may degrade the FFOCM image quality because of focus defect and optical dispersion mismatch. These phenomena and their consequences are discussed in this theoretical paper. Experimental methods that have been implemented in FFOCM to minimize the adverse effects of these phenomena are summarized and compared.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy

Jonas Binding, Juliette Ben Arous, Jean-François Léger, Sylvain Gigan, Claude Boccara, and Laurent Bourdieu
Opt. Express 19(6) 4833-4847 (2011)

Ultrahigh-resolution full-field optical coherence tomography

Arnaud Dubois, Kate Grieve, Gael Moneron, Romain Lecaque, Laurent Vabre, and Claude Boccara
Appl. Opt. 43(14) 2874-2883 (2004)

Full-field optical coherence tomography using immersion Mirau interference microscope

Sheng-Hua Lu, Chia-Jung Chang, and Ching-Fen Kao
Appl. Opt. 52(18) 4400-4403 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [Crossref]
  2. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [Crossref]
  3. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [Crossref]
  4. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002).
    [Crossref]
  5. A. Dubois, Handbook of Full-Field Optical Coherence Microscopy, Technology and Applications (Pan Stanford Publishing, 2016).
  6. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
    [Crossref]
  7. A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultra-high spatial resolution,” Opt. Lett. 40, 5347–5350 (2015).
    [Crossref]
  8. L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
    [Crossref]
  9. G. Moneron, A. C. Boccara, and A. Dubois, “Troboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005).
    [Crossref]
  10. G. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
    [Crossref]
  11. G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058–2060 (2007).
    [Crossref]
  12. A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
    [Crossref]
  13. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultrahigh-resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008).
    [Crossref]
  14. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49, 1480–1488 (2010).
    [Crossref]
  15. A. Latrive and A. C. Boccara, “In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe,” Biomed. Opt. Express 2, 2897–2904 (2011).
    [Crossref]
  16. A. Federici and A. Dubois, “Three-band 1.9 micron-axial resolution full-field optical coherence microscopy over a 580–1600  nm wavelength range using a single camera,” Opt. Lett. 39, 1374–1377 (2014).
    [Crossref]
  17. B. W. Yang, Y. Y. Wang, Y. M. Lin, Y. S. Juan, H. T. Chen, and S. P. Ying, “Applying RGB LED in full-field optical coherence tomography for real-time full-color tissue imaging,” Appl. Opt. 53, E56–E60 (2014).
    [Crossref]
  18. E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40, 3272–3275 (2015).
    [Crossref]
  19. J. Ogien and A. Dubois, “High-resolution full-field optical coherence microscopy using a broadband light-emitting diode,” Opt. Express 24, 9922–9931 (2016).
    [Crossref]
  20. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
    [Crossref]
  21. K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
    [Crossref]
  22. M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
    [Crossref]
  23. E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology 224, 84–92 (2012).
    [Crossref]
  24. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
    [Crossref]
  25. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
    [Crossref]
  26. M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
    [Crossref]
  27. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
    [Crossref]
  28. T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).
  29. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
    [Crossref]
  30. C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366–374 (1997).
    [Crossref]
  31. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
    [Crossref]
  32. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34, 1576–1578 (2009).
    [Crossref]
  33. A. Safrani and I. Abdulhalim, “Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography,” Appl. Opt. 50, 3021–3027 (2011).
    [Crossref]
  34. I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Der Physik 524, 787–804 (2012).
    [Crossref]
  35. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
    [Crossref]
  36. I. Abdulhalim, “Theory for double beam interference microscopes with coherence effects and verification using the Linnik microscope,” J. Mod. Opt. 48, 279–302 (2009).
    [Crossref]
  37. V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
    [Crossref]
  38. I. Zeylikovich, “Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer,” Appl. Opt. 47, 2171–2177 (2008).
    [Crossref]
  39. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).
  40. G. S. Kino and S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [Crossref]
  41. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
    [Crossref]
  42. A. Safrani and I. Abdulhalim, “Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination,” Opt. Lett. 37, 458–460 (2012).
    [Crossref]
  43. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
    [Crossref]
  44. H. Makhlouf, K. Perronet, G. Dupuis, S. Levêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
    [Crossref]
  45. P. L. Altman and D. S. Dittmer, Biology Data Book, 2nd ed. (Federation of American Societies for Experimental Biology, 1972), Vol. 1.
  46. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46, 8394–8401 (2007).
    [Crossref]
  47. http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT .
  48. C. C. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, M. Y. Lin, J. W. Tjiu, and S. L. Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomed. Opt. Express 5, 3001–3010 (2014).
    [Crossref]
  49. W. J. Tango, “Dispersion in stellar interferometry,” Appl. Opt. 29, 516–521 (1990).
    [Crossref]
  50. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
    [Crossref]
  51. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [Crossref]
  52. S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt. 52, 4400–4403 (2013).
    [Crossref]

2016 (1)

2015 (3)

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultra-high spatial resolution,” Opt. Lett. 40, 5347–5350 (2015).
[Crossref]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40, 3272–3275 (2015).
[Crossref]

2014 (4)

2013 (2)

S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt. 52, 4400–4403 (2013).
[Crossref]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

2012 (5)

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology 224, 84–92 (2012).
[Crossref]

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Der Physik 524, 787–804 (2012).
[Crossref]

H. Makhlouf, K. Perronet, G. Dupuis, S. Levêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
[Crossref]

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

A. Safrani and I. Abdulhalim, “Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination,” Opt. Lett. 37, 458–460 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

I. Abdulhalim, “Theory for double beam interference microscopes with coherence effects and verification using the Linnik microscope,” J. Mod. Opt. 48, 279–302 (2009).
[Crossref]

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34, 1576–1578 (2009).
[Crossref]

2008 (3)

2007 (4)

2006 (3)

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
[Crossref]

G. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

2005 (1)

2004 (4)

L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

2002 (3)

1999 (2)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

1998 (1)

1997 (1)

C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366–374 (1997).
[Crossref]

1996 (1)

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

1992 (1)

T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).

1991 (1)

1990 (2)

Abdulhalim, I.

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Der Physik 524, 787–804 (2012).
[Crossref]

A. Safrani and I. Abdulhalim, “Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination,” Opt. Lett. 37, 458–460 (2012).
[Crossref]

A. Safrani and I. Abdulhalim, “Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography,” Appl. Opt. 50, 3021–3027 (2011).
[Crossref]

I. Abdulhalim, “Theory for double beam interference microscopes with coherence effects and verification using the Linnik microscope,” J. Mod. Opt. 48, 279–302 (2009).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

Altman, P. L.

P. L. Altman and D. S. Dittmer, Biology Data Book, 2nd ed. (Federation of American Societies for Experimental Biology, 1972), Vol. 1.

Antoine, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Assayag, O.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Auksorius, E.

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

Beaurepaire, E.

Benattar, L.

Blanchot, L.

Boccara, A. C.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40, 3272–3275 (2015).
[Crossref]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

A. Latrive and A. C. Boccara, “In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe,” Biomed. Opt. Express 2, 2897–2904 (2011).
[Crossref]

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34, 1576–1578 (2009).
[Crossref]

A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058–2060 (2007).
[Crossref]

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Troboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
[Crossref]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[Crossref]

Boccara, C.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Boccara, M.

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Boisrobert, C. Y.

Booth, M. J.

Boppart, S. A.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

Bouma, B. E.

Brakenhoff, G. J.

T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).

Brzezinski, M.

Burcheri, A.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Chang, C. J.

Chang, C. K.

Chen, H. T.

Chim, S. C.

Chretien, F.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Coello, Y.

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Dalimier, E.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology 224, 84–92 (2012).
[Crossref]

Danielson, B. L.

Dantus, M.

David, G.

De Martino, A.

De Paepe, R.

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Debarre, D.

Devaux, B.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Dittmer, D. S.

P. L. Altman and D. S. Dittmer, Biology Data Book, 2nd ed. (Federation of American Societies for Experimental Biology, 1972), Vol. 1.

Drévillon, B.

Drexler, W.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

Dubois, A.

J. Ogien and A. Dubois, “High-resolution full-field optical coherence microscopy using a broadband light-emitting diode,” Opt. Express 24, 9922–9931 (2016).
[Crossref]

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultra-high spatial resolution,” Opt. Lett. 40, 5347–5350 (2015).
[Crossref]

A. Federici and A. Dubois, “Three-band 1.9 micron-axial resolution full-field optical coherence microscopy over a 580–1600  nm wavelength range using a single camera,” Opt. Lett. 39, 1374–1377 (2014).
[Crossref]

H. Makhlouf, K. Perronet, G. Dupuis, S. Levêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
[Crossref]

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49, 1480–1488 (2010).
[Crossref]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultrahigh-resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008).
[Crossref]

A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058–2060 (2007).
[Crossref]

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Troboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
[Crossref]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
[Crossref]

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy, Technology and Applications (Pan Stanford Publishing, 2016).

Dupuis, G.

Federici, A.

Fercher, A. F.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

Fujimoto, J. G.

Georges, P.

Gigan, S.

Grieve, K.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

Guiot, E.

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Harms, F.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

Ho, T. S.

Hsu, K. Y.

Huang, S. L.

Iftimia, N.

Ippen, E. P.

Jain, M.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Juan, Y. S.

Kalyanov, A. L.

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

Kao, C. F.

Kärtner, F. X.

Kim, M.

Kino, G. S.

Kumar, G.

Labiau, S.

Latrive, A.

Laude, B.

Le Conte de Poly, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Le Gargasson, J. F.

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

Lebec, M.

Lecaque, R.

Levêque-Fort, S.

Li, X. D.

Lin, M. Y.

Lin, Y. M.

Lozovoy, V. V.

Lu, S. H.

Lychagov, V. V.

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

Makhlouf, H.

Miller, T. L.

Moneron, G.

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058–2060 (2007).
[Crossref]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Troboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

Moreau, J.

Morgner, U.

Mukherjee, S.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Ogien, J.

Oh, G. W. Y.

Oud, J. L.

T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).

Pallud, J.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Paques, M.

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

Perronet, K.

Pitris, C.

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Riben, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Robinson, B. D.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Ryabukho, V. P.

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

Sacchet, D.

Safrani, A.

Sahel, J.

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

Saint-Jalmes, H.

Salamoon, B.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Salomon, D.

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology 224, 84–92 (2012).
[Crossref]

Schmitt, J. M.

Schwartz, L.

Schwartz, W.

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Sheppard, C. J. R.

C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366–374 (1997).
[Crossref]

Sigal-Zafrani, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Smirnov, I. V.

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Tango, W. J.

Tearney, G. J.

Thouvenin, O.

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Tjiu, J. W.

Torok, P.

C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366–374 (1997).
[Crossref]

Tsai, C. C.

Vabre, L.

Varlet, P.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Vidal, G.

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Visser, T. D.

T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).

Wang, Y. Y.

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

Xu, B.

Yang, B. W.

Yelin, R.

Ying, S. P.

Yu, L.

Yun, S. H.

Zeylikovich, I.

Ann. Der Physik (1)

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Der Physik 524, 787–804 (2012).
[Crossref]

Appl. Opt. (12)

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
[Crossref]

B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2882 (2004).
[Crossref]

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49, 1480–1488 (2010).
[Crossref]

B. W. Yang, Y. Y. Wang, Y. M. Lin, Y. S. Juan, H. T. Chen, and S. P. Ying, “Applying RGB LED in full-field optical coherence tomography for real-time full-color tissue imaging,” Appl. Opt. 53, E56–E60 (2014).
[Crossref]

I. Zeylikovich, “Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer,” Appl. Opt. 47, 2171–2177 (2008).
[Crossref]

G. S. Kino and S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[Crossref]

Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46, 8394–8401 (2007).
[Crossref]

A. Safrani and I. Abdulhalim, “Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography,” Appl. Opt. 50, 3021–3027 (2011).
[Crossref]

W. J. Tango, “Dispersion in stellar interferometry,” Appl. Opt. 29, 516–521 (1990).
[Crossref]

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
[Crossref]

S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt. 52, 4400–4403 (2013).
[Crossref]

Biomed. Opt. Express (2)

Dermatology (1)

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology 224, 84–92 (2012).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J. F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution full-field optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004).
[Crossref]

J. Biomed. Opt. (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–156 (1999).
[Crossref]

J. Microsc. (2)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366–374 (1997).
[Crossref]

J. Mod. Opt. (1)

I. Abdulhalim, “Theory for double beam interference microscopes with coherence effects and verification using the Linnik microscope,” J. Mod. Opt. 48, 279–302 (2009).
[Crossref]

J. Opt. A (2)

V. V. Lychagov, V. P. Ryabukho, A. L. Kalyanov, and I. V. Smirnov, “Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing,” J. Opt. A 14, 015702 (2012).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

J. Pathol. Inform. (1)

M. Jain, B. D. Robinson, B. Salamoon, O. Thouvenin, A. C. Boccara, and S. Mukherjee, “Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography,” J. Pathol. Inform. 6, 53–59 (2015).
[Crossref]

Neuroimage Clin. (1)

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref]

Opt. Commun. (1)

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266, 738–743 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (12)

H. Makhlouf, K. Perronet, G. Dupuis, S. Levêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
[Crossref]

A. Safrani and I. Abdulhalim, “Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination,” Opt. Lett. 37, 458–460 (2012).
[Crossref]

J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Troboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005).
[Crossref]

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultra-high spatial resolution,” Opt. Lett. 40, 5347–5350 (2015).
[Crossref]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
[Crossref]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058–2060 (2007).
[Crossref]

A. Federici and A. Dubois, “Three-band 1.9 micron-axial resolution full-field optical coherence microscopy over a 580–1600  nm wavelength range using a single camera,” Opt. Lett. 39, 1374–1377 (2014).
[Crossref]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40, 3272–3275 (2015).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[Crossref]

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34, 1576–1578 (2009).
[Crossref]

Optik (1)

T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik 90, 17–19 (1992).

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227–1234 (2004).
[Crossref]

Plant J. (1)

M. Boccara, W. Schwartz, E. Guiot, G. Vidal, R. De Paepe, A. Dubois, and A. C. Boccara, “Early chloroplastic alterations analysed by optical coherence tomography during harpin-induced hypersensitive response,” Plant J. 50, 338–346 (2007).
[Crossref]

Technol. Cancer Res. Treat. Express (1)

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and A. C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. Treat. Express 13, 455–468 (2014).
[Crossref]

Other (4)

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy, Technology and Applications (Pan Stanford Publishing, 2016).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

P. L. Altman and D. S. Dittmer, Biology Data Book, 2nd ed. (Federation of American Societies for Experimental Biology, 1972), Vol. 1.

http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustration of the mismatch of the coherence plane and the focal plane in FFOCM. (a) The interference microscope is adjusted so that the coherence plane and the focal plane coincide when imaging the surface of the sample. (b) When the sample is moved a distance d, the coherence and focal planes separate from each other, except if the refractive index of the sample (n) is equal to the refractive index of the immersion medium (nim).

Fig. 2.
Fig. 2.

Simulation of the intensity axial response of FFOCM with the following experimental parameters: λ0=800  nm, Δλ=250  nm, d=50  μm, and n=1.38. (a) Dry and (b) water-immersion microscope objectives of NA=0.3 are considered.

Fig. 3.
Fig. 3.

Imaging depth zmax before attenuation occurs due to focus defect, as a function of sample refractive index n, using dry microscope objectives (a) nim=1 or water-immersion microscope objectives (b) nim=1.33 for various numerical aperture values. The mean wavelength is λ0=800  nm.

Fig. 4.
Fig. 4.

FFOCM experimental setups, based on the Linnik interferometer, with mechanical adjustments for dynamic focusing. MO, microscope objective; BS, beam splitter; RM, reference mirror. The arrows indicate the displacements of the sample, the microscope objective in the sample arm, and the whole reference arm of the Linnik interferometer.

Fig. 5.
Fig. 5.

Theoretical degradation of axial resolution in FFOCM, as a function of imaging depth z in the sample, due to optical dispersion mismatch. The sample is considered to be (a) water, (b) BK7 glass, or (c) a typical biological tissue. The immersion medium is air (nim=1) or water (nim=1.33). The illumination source has a spectrum centered at λ=800  nm with width Δλ=250  nm.

Fig. 6.
Fig. 6.

FFOCM experimental setup with dynamic focusing and dispersion mismatch compensation. MO, microscope objective; BS, beam splitter; RM, reference mirror; DCP1, dispersion compensation plate; DCP2, pair of dispersion compensation prisms.

Fig. 7.
Fig. 7.

Simplified FFOCM experimental setups using immersion microscope objectives. MO, microscope objective; BS, beam splitter; RM, reference mirror. (a) and (b) Linnik configurations, (c) Michelson configuration, and (d) Mirau configuration.

Tables (1)

Tables Icon

Table 1. Normalized Displacements of the Sample (ds/z), Reference Arm (dref/z), and Sample Microscope Objective (dobj/z) to Image at Depth z (z>0) below the Surface of the Sample in the Three Experimental Configurations Shown in Fig. 4

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Δz=|zfoczcoh|=d|n/nimnim/n|,
VS(z)=exp[Δk24ln2(zzcoh)2].
ΔzS=4ln2Δk=lc2n2ln2nπ(λ02Δλ),
VNA(z)=sinc2[k0(1cosαmax)(zzfoc)],
ΔzNAπk0(1cosαmax),
ΔzNA=nλ0NA2.
zmax=λ0NA2|n×nim2n2nim2|.
dref=ds(n2nim2)nim,
ds=znimn.
dobj=ds(n2nim2)(n2nim2+nim).
ds=z(n2nim2+nimn)
dobj=z(n2nim2n).
dobj=znimn<0.
dref=z(n2nim2+nim)n.
Δz0ΔzS=lc2n=2ln2λ2πnΔλ.
τc*=τc1+(2τdispτc)4,
τdisp=2|zGVDdsGVDim|,(config.1),
τdisp=2|zGVD+(dobjds)GVDim|,(config.2),
τdisp=2|zGVD+dobjGVDim|,(config.3).
Δz=Δz01+4(c0nΔz0)4(GVDnimnGVDim)2z2,
I(z)=I(0){1+4(c0nΔz0)4(GVDnimnGVDim)2z2}1/2.
zGVD+dobjGVDim=eGVDcomp,
nz+(nim1)dobj=dref+(ncomp1)e.
dref=z[n(nim1)nim/n(ncomp1)(GVDnimnGVDim)/GVDcomp].
dref=z[n(ncomp1)GVD/GVDcomp],
dobj=z/n.
e=zGVD/GVDcomp.
GVDcomp/(ncomp1)=GVD/n.