Abstract

The concept of orthonormal polynomials is revisited by developing a Zernike-based orthonormal set for a non-circular pupil that is transmitting an aberrated, non-uniform field. We refer to this pupil as a general pupil. The process is achieved by using the matrix form of the Gram–Schmidt procedure on Zernike circle polynomials and is interpreted as a process of balancing each Zernike circle polynomial by adding those of lower order in the general pupil, a procedure which was previously performed using classical aberrations. We numerically demonstrate this concept by comparing the representation of phase in a square-Gaussian pupil using the Zernike-Gauss square and Zernike circle polynomials. As expected, using the Strehl ratio, we show that only specific lower-order aberrations can be used to balance specific aberrations, for example, tilt cannot be used to balance spherical aberration. In the process, we present a possible definition of the Maréchal criterion for the analysis of the tolerance of systems with apodized pupils.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription